17,826 research outputs found

    S-AVE Semantic Active Vision Exploration and Mapping of Indoor Environments for Mobile Robots

    Get PDF
    Semantic mapping is fundamental to enable cognition and high-level planning in robotics. It is a difficult task due to generalization to different scenarios and sensory data types. Hence, most techniques do not obtain a rich and accurate semantic map of the environment and of the objects therein. To tackle this issue we present a novel approach that exploits active vision and drives environment exploration aiming at improving the quality of the semantic map

    The Profiling Potential of Computer Vision and the Challenge of Computational Empiricism

    Full text link
    Computer vision and other biometrics data science applications have commenced a new project of profiling people. Rather than using 'transaction generated information', these systems measure the 'real world' and produce an assessment of the 'world state' - in this case an assessment of some individual trait. Instead of using proxies or scores to evaluate people, they increasingly deploy a logic of revealing the truth about reality and the people within it. While these profiling knowledge claims are sometimes tentative, they increasingly suggest that only through computation can these excesses of reality be captured and understood. This article explores the bases of those claims in the systems of measurement, representation, and classification deployed in computer vision. It asks if there is something new in this type of knowledge claim, sketches an account of a new form of computational empiricism being operationalised, and questions what kind of human subject is being constructed by these technological systems and practices. Finally, the article explores legal mechanisms for contesting the emergence of computational empiricism as the dominant knowledge platform for understanding the world and the people within it

    Track, then Decide: Category-Agnostic Vision-based Multi-Object Tracking

    Full text link
    The most common paradigm for vision-based multi-object tracking is tracking-by-detection, due to the availability of reliable detectors for several important object categories such as cars and pedestrians. However, future mobile systems will need a capability to cope with rich human-made environments, in which obtaining detectors for every possible object category would be infeasible. In this paper, we propose a model-free multi-object tracking approach that uses a category-agnostic image segmentation method to track objects. We present an efficient segmentation mask-based tracker which associates pixel-precise masks reported by the segmentation. Our approach can utilize semantic information whenever it is available for classifying objects at the track level, while retaining the capability to track generic unknown objects in the absence of such information. We demonstrate experimentally that our approach achieves performance comparable to state-of-the-art tracking-by-detection methods for popular object categories such as cars and pedestrians. Additionally, we show that the proposed method can discover and robustly track a large variety of other objects.Comment: ICRA'18 submissio
    corecore