35,279 research outputs found

    Computing the Ball Size of Frequency Permutations under Chebyshev Distance

    Get PDF
    Let SnλS_n^\lambda be the set of all permutations over the multiset {1,...,1λ,...,m,...,mλ}\{\overbrace{1,...,1}^{\lambda},...,\overbrace{m,...,m}^\lambda\} where n=mλn=m\lambda. A frequency permutation array (FPA) of minimum distance dd is a subset of SnλS_n^\lambda in which every two elements have distance at least dd. FPAs have many applications related to error correcting codes. In coding theory, the Gilbert-Varshamov bound and the sphere-packing bound are derived from the size of balls of certain radii. We propose two efficient algorithms that compute the ball size of frequency permutations under Chebyshev distance. Both methods extend previous known results. The first one runs in O((2dλdλ)2.376logn)O({2d\lambda \choose d\lambda}^{2.376}\log n) time and O((2dλdλ)2)O({2d\lambda \choose d\lambda}^{2}) space. The second one runs in O((2dλdλ)(dλ+λλ)nλ)O({2d\lambda \choose d\lambda}{d\lambda+\lambda\choose \lambda}\frac{n}{\lambda}) time and O((2dλdλ))O({2d\lambda \choose d\lambda}) space. For small constants λ\lambda and dd, both are efficient in time and use constant storage space.Comment: Submitted to ISIT 201

    Theory of Decoherence-Free Fault-Tolerant Universal Quantum Computation

    Get PDF
    Universal quantum computation on decoherence-free subspaces and subsystems (DFSs) is examined with particular emphasis on using only physically relevant interactions. A necessary and sufficient condition for the existence of decoherence-free (noiseless) subsystems in the Markovian regime is derived here for the first time. A stabilizer formalism for DFSs is then developed which allows for the explicit understanding of these in their dual role as quantum error correcting codes. Conditions for the existence of Hamiltonians whose induced evolution always preserves a DFS are derived within this stabilizer formalism. Two possible collective decoherence mechanisms arising from permutation symmetries of the system-bath coupling are examined within this framework. It is shown that in both cases universal quantum computation which always preserves the DFS (*natural fault-tolerant computation*) can be performed using only two-body interactions. This is in marked contrast to standard error correcting codes, where all known constructions using one or two-body interactions must leave the codespace during the on-time of the fault-tolerant gates. A further consequence of our universality construction is that a single exchange Hamiltonian can be used to perform universal quantum computation on an encoded space whose asymptotic coding efficiency is unity. The exchange Hamiltonian, which is naturally present in many quantum systems, is thus *asymptotically universal*.Comment: 40 pages (body: 30, appendices: 3, figures: 5, references: 2). Fixed problem with non-printing figures. New references added, minor typos correcte

    Constructions of Rank Modulation Codes

    Full text link
    Rank modulation is a way of encoding information to correct errors in flash memory devices as well as impulse noise in transmission lines. Modeling rank modulation involves construction of packings of the space of permutations equipped with the Kendall tau distance. We present several general constructions of codes in permutations that cover a broad range of code parameters. In particular, we show a number of ways in which conventional error-correcting codes can be modified to correct errors in the Kendall space. Codes that we construct afford simple encoding and decoding algorithms of essentially the same complexity as required to correct errors in the Hamming metric. For instance, from binary BCH codes we obtain codes correcting tt Kendall errors in nn memory cells that support the order of n!/(log2n!)tn!/(\log_2n!)^t messages, for any constant t=1,2,...t= 1,2,... We also construct families of codes that correct a number of errors that grows with nn at varying rates, from Θ(n)\Theta(n) to Θ(n2)\Theta(n^{2}). One of our constructions gives rise to a family of rank modulation codes for which the trade-off between the number of messages and the number of correctable Kendall errors approaches the optimal scaling rate. Finally, we list a number of possibilities for constructing codes of finite length, and give examples of rank modulation codes with specific parameters.Comment: Submitted to IEEE Transactions on Information Theor

    Correcting Charge-Constrained Errors in the Rank-Modulation Scheme

    Get PDF
    We investigate error-correcting codes for a the rank-modulation scheme with an application to flash memory devices. In this scheme, a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. The resulting scheme eliminates the need for discrete cell levels, overcomes overshoot errors when programming cells (a serious problem that reduces the writing speed), and mitigates the problem of asymmetric errors. In this paper, we study the properties of error-correcting codes for charge-constrained errors in the rank-modulation scheme. In this error model the number of errors corresponds to the minimal number of adjacent transpositions required to change a given stored permutation to another erroneous one—a distance measure known as Kendall’s τ-distance.We show bounds on the size of such codes, and use metric-embedding techniques to give constructions which translate a wealth of knowledge of codes in the Lee metric to codes over permutations in Kendall’s τ-metric. Specifically, the one-error-correcting codes we construct are at least half the ball-packing upper bound

    Trellis decoding complexity of linear block codes

    Get PDF
    In this partially tutorial paper, we examine minimal trellis representations of linear block codes and analyze several measures of trellis complexity: maximum state and edge dimensions, total span length, and total vertices, edges and mergers. We obtain bounds on these complexities as extensions of well-known dimension/length profile (DLP) bounds. Codes meeting these bounds minimize all the complexity measures simultaneously; conversely, a code attaining the bound for total span length, vertices, or edges, must likewise attain it for all the others. We define a notion of “uniform” optimality that embraces different domains of optimization, such as different permutations of a code or different codes with the same parameters, and we give examples of uniformly optimal codes and permutations. We also give some conditions that identify certain cases when no code or permutation can meet the bounds. In addition to DLP-based bounds, we derive new inequalities relating one complexity measure to another, which can be used in conjunction with known bounds on one measure to imply bounds on the others. As an application, we infer new bounds on maximum state and edge complexity and on total vertices and edges from bounds on span lengths
    corecore