1,022,595 research outputs found

    Space radiation studies

    Get PDF
    Two Active Radiation Dosimeters (ARD's) flown on Spacelab 1, performed without fault and were returned to Space Science Laboratory, MSFC for recalibration. During the flight, performance was monitored at the Huntsville Operations Center (HOSC). Despite some problems with the Shuttle data system handling the verification flight instrumentation (VFI), it was established that the ARD's were operating normally. Postflight calibrations of both units determined that sensitivities were essentially unchanged from preflight values. Flight tapes were received for approx. 60 percent of the flight and it appears that this is the total available. The data was analyzed in collaboration with Space Science Laboratory, MSFC. Also, the Nuclear Radiation Monitor (NRM) was assembled and tested at MSFC. Support was rendered in the areas of materials control and parts were supplied for the supplementary heaters, dome gas-venting device and photomultiplier tube housing. Performance characteristics of some flight-space photomultipliers were measured. The NRM was flown on a balloon-borne test flight and subsequently performed without fault on Spacelab-2. This data was analyzed and published

    Space radiation studies

    Get PDF
    The overall data flow diagram for the nuclear radiation monitor to fly on Spacelab 2 was revised. The use of structured techniques for the software design appears to be working well. An example of the PASCAL pseudocode written to develop and document the software design is included

    Limitations in Predicting the Space Radiation Health Risk for Exploration Astronauts

    Get PDF
    Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.Comment: Accepted for publication by Nature Microgravity (2018

    Hazards to space workers from ionizing radiation

    Get PDF
    A compilation of background information and a preliminary assessment of the potential risks to workers from the ionizing radiation encountered in space is provided. The report: (1) summarizes the current knowledge of the space radiation environment to which space workers will be exposed; (2) reviews the biological effects of ionizing radiation considered of major importance to a SPS project; and (3) discusses the health implications of exposure of populations of space workers to the radiations likely to penetrate through the shielding provided by the SPS work stations and habitat shelters of the SPS Reference System

    CASTRO: A New Compressible Astrophysical Solver. III. Multigroup Radiation Hydrodynamics

    Full text link
    We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c)O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically-rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts, one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.Comment: accepted by ApJS, 27 pages, 20 figures, high-resolution version available at https://ccse.lbl.gov/Publications/wqzhang/castro3.pd

    A Monte Carlo photocurrent/photoemission computer program

    Get PDF
    A Monte Carlo computer program was developed for the computation of photocurrents and photoemission in gamma (X-ray)-irradiated materials. The program was used for computation of radiation-induced surface currents on space vehicles and the computation of radiation-induced space charge environments within space vehicles

    An Adverse Outcome Pathway for Potential Space Radiation Induced Neurological Diseases

    Get PDF
    Astronauts have begun to spend increasingly longer periods in space, putting themselves in foreign environments in order to explore the unknown. Space radiation is one of the largest health risks faced by astronauts on their missions. The space radiation environment has the ability to cause high levels of irreversible damage. Multiple sources of charged particle radiation exist in the space environment that may increase risk of carcinogenesis, degeneration of bodily tissue (e.g. gastrointestinal, cardiovascular, or pulmonary), acute radiation syndromes, and acute and late central nervous system (CNS) disorders. In order to help inform an understanding of the risk of degenerative CNS disease due to radiation exposure, an initial step is presented here to develop an adverse outcome pathway from radiation exposure focused on Alzheimers disease

    Evaluating the Effectiveness of Shielding Material, Vehicle Shape and Astronaut Position for Deep Space Travel

    Get PDF
    Background: As future crewed, deep space missions are being planned, it is important to assess how spacecraft design can be used to minimize radiation exposure. Collectively with shielding material, vehicle shape and astronaut position must be used to protect astronauts from the two primary sources of space radiation: Galactic Cosmic Rays (GCRs) and Solar Particle Events (SPEs). Methods: The On-Line Tool for the Assessment of Radiation in Space (OLTARIS) version 4.1 analysis package is used to evaluate and analyze this detailed radiation field. Developed by the National Aeronautics and Space Administration\u27s (NASA) Langley Research Center, the tool enables engineering and research related space radiation calculations. Each configuration is evaluated in whole body effective dose equivalent (ED). This research evaluates 70 aerospace materials, 2 vehicle shapes and 3 astronaut positions. Results and Conclusions: The material analyses show that for metals, aluminum outperforms and therefore is the most feasible metal for deep space travel. But when evaluating all materials, polyethylene outperforms all feasible aerospace materials. The vehicle shape and astronaut position analyses show that moving a human phantom closer to a wall does significantly decrease the ED. This pattern is not dependent on material nor boundary condition, but the mean shielding thickness a source ray must travel through for the GCR boundary condition. For shielding thicknesses greater than 30 g/cm 2 for polyethylene and 100g/cm 2 for aluminum, the results suggest that having astronauts’ habitats and work areas located further from the center will help protect astronauts longer from deep space radiation.https://scholarscompass.vcu.edu/gradposters/1067/thumbnail.jp

    Radiological health risks to astronauts from space activities and medical procedures

    Get PDF
    Radiation protection standards for space activities differ substantially from those applied to terrestrial working situations. The levels of radiation and subsequent hazards to which space workers are exposed are quite unlike anything found on Earth. The new more highly refined system of risk management involves assessing the risk to each space worker from all sources of radiation (occupational and non-occupational) at the organ level. The risk coefficients were applied to previous space and medical exposures (diagnostic x ray and nuclear medicine procedures) in order to estimate the radiation-induced lifetime cancer incidence and mortality risk. At present, the risk from medical procedures when compared to space activities is 14 times higher for cancer incidence and 13 times higher for cancer mortality; however, this will change as the per capita dose during Space Station Freedom and interplanetary missions increases and more is known about the risks from exposure to high-LET radiation
    corecore