2 research outputs found

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor

    Geometrical relations between space time block code designs and complexity reduction

    Full text link
    In this work, the geometric relation between space time block code design for the coherent channel and its non-coherent counterpart is exploited to get an analogue of the information theoretic inequality I(X;S)≤I((X,H);S)I(X;S)\le I((X,H);S) in terms of diversity. It provides a lower bound on the performance of non-coherent codes when used in coherent scenarios. This leads in turn to a code design decomposition result splitting coherent code design into two complexity reduced sub tasks. Moreover a geometrical criterion for high performance space time code design is derived.Comment: final version, 11 pages, two-colum
    corecore