119,795 research outputs found

    Bayesian evaluation of the southern hemisphere radiocarbon offset during the holocene

    Get PDF
    While an interhemispheric offset in atmospheric radiocarbon levels from AD 1950–950 is now well established, its existence earlier in the Holocene is less clear, with some studies reporting globally uniform 14C levels while others finding Southern Hemisphere samples older by a few decades. In this paper, we present a method for wiggle-matching Southern Hemisphere data sets against Northern Hemisphere curves, using the Bayesian calibration program OxCal 4.1 with the Reservoir Offset function accommodating a potential interhemispheric offset. The accuracy and robustness of this approach is confirmed by wiggle-matching known-calendar age sequences of the Southern Hemisphere calibration curve SHCal04 against the Northern Hemisphere curve IntCal04. We also show that 5 of 9 Holocene Southern Hemisphere data sets are capable of yielding reliable offset information. Those data sets that are accurate and precise show that interhemispheric offset levels in the Early Holocene are similar to modern levels, confirming SHCal04 as the curve of choice for calibrating Southern Hemisphere samples

    Southern Hemisphere automated supernova search

    Get PDF
    The Perth Astronomy Research Group has developed an automated supernova search program, using the 61 cm Perth–Lowell reflecting telescope at Perth Observatory in Western Australia, equipped with a CCD camera. The system is currently capable of observing about 15 objects per hour, using 3 min exposures, and has a detection threshold of 18th–19th magnitude. The entire system has been constructed using low‐cost IBM‐compatible computers. Two original discoveries (SN 1993K, SN 1994R) have so far been made during automated search runs. This paper describes the hardware and software used for the supernova search program, and shows some preliminary results from the search system

    Variations of radiocarbon in tree rings: southern hemisphere offset preliminary results

    Get PDF
    The Queen's University of Belfast, Northern Ireland and University of Waikato, Hamilton, New Zealand radiocarbon laboratories have undertaken a series of high-precision measurements on decadal samples of dendrochronologically dated oak (Quercus patrea) and cedar (Libocedrus bidwillii) from Great Britain and New Zealand, respectively. The results show a real atmospheric offset of 3.4 ± 0.6% (27.2 ± 4.7 ¹⁴C yr) between the two locations for the interval AD 1725 to AD 1885, with the Southern Hemisphere being depleted in ¹⁴C. This result is less than the value currently used to correct Southern Hemisphere calibrations, possibly indicating a gradient in Δ¹⁴C within the Southern Hemisphere

    Southern Hemisphere meteor rates Final report

    Get PDF
    Diurnal variations of Southern Hemisphere meteor rat

    The 1991 southern hemisphere complex of activity

    Get PDF
    We have investigated the development of a complex of activity which took place in the southern hemisphere of the Sun between July 1991 and April 1992. The whole process culminated with the successive formation of two large active regions with sunspot groups NOAA 6850 (September/October) and NOAA 6891 (October/November 1991), both having complicated magnetic fields, but the former without heavy flare activity. We observed the appearance of the individual active regions as the consequence of the development stage of large-scale magnetic fields in the given area of the solar surface, in connection with their longitudinal and latitudinal distribution. We have studied the dynamics of this development on magnetic synoptic charts, as well as on spectroheliograms taken in the K-line of ionized calcium. Our new observations confirm the regularities found earlier and connection of global and local developments with convection. We think that they could become a tool for solar activity prediction and that they could be used for comparative studies of stellar complexes of activity

    Comparison of satellite derived dynamical quantities in the stratosphere of the Southern Hemisphere

    Get PDF
    The proceedings are summarized from a pre-MASH planning workshop on the intercomparison of Southern Hemisphere observations, analyses and derived dynamical quantities held in Williamsburg, Virginia during April 1986. The aims of this workshop were primarily twofold: (1) comparison of Southern Hemisphere dynamical quantities derived from various satellite data archives (e.g., from limb scanners and nadir sounders); and (2) assessing the impact of different base-level height information on such derived quantities. These tasks are viewed as especially important in the Southern Hemisphere because of the paucity of conventional measurements. A further strong impetus for the MASH program comes from the recent discovery of the springtime ozone hold over Antarctica. Insight gained from validation studies such as the one reported here will contribute to an improved understanding of the role of meteorology in the development and evolution of the hold, in its interannual variability, and in its interhemispheric differences. The dynamical quantities examined in this workshop included geopotential height, zonal wind, potential vorticity, eddy heat and momentum fluxes, and Eliassen-Palm fluxes. The time periods and data sources constituting the MASH comparisons are summarized

    North-South Distribution of Solar Flares during Cycle 23

    Full text link
    In this paper, we investigate the spatial distribution of solar flares in the northern and southern hemisphere of the Sun that occurred during the period 1996 to 2003. This period of investigation includes the ascending phase, the maximum and part of descending phase of solar cycle 23. It is revealed that the flare activity during this cycle is low compared to previous solar cycle, indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with respect to heliographic latitudes shows a significant asymmetry between northern and southern hemisphere which is maximum during the minimum phase of the solar cycle. The present study indicates that the activity dominates the northern hemisphere in general during the rising phase of the cycle (1997-2000). The dominance of northern hemisphere is shifted towards the southern hemisphere after the solar maximum in 2000 and remained there in the successive years. Although the annual variations in the asymmetry time series during cycle 23 are quite different from cycle 22, they are comparable to cycle 21.Comment: 6 pages, 2 figures, 1 table; Accepted for the publication in the proceedings of international solar workshop held at ARIES, Nainital, India on "Transient Phenomena on the Sun and Interplanetary Medium" in a special issue of "Journal of Astrophysics and Astronomy (JAA)

    Mars: Morphology of Southern Hemisphere intracrater dunefields

    Get PDF
    Viking Orbiter images of intracrater dunefields in the Noachis Terra region were examined in order to study the morphology of these landforms and to assess their relationship to local geological settings. The sizes of the dunefields range from 40 to 3600 sq km and vary directly with crater size. Preliminary studies reveal dunefields of two varieties. The most common type is composed of massed straight to slightly wavy crescentic dunes similar to those described by Breed. Dunefields of this type occupy more than 20% of the area of the crater floor, with the dunefield margins often marked by a large dune wall or rampart. Dune spacing ranges between 0.7 and 1.2 km. The second type of dune accumulation consists of clusters of large, widely spaced straight or curved ridges, which often intersect to create rectilinear patterns. Dunes are typically spaced 1.6 to 4 km apart. Earth terrestrial analogs for these dunes are discussed

    Comparison of satellite-derived dynamical quantities for the stratosphere of the Southern Hemisphere

    Get PDF
    As part of the international Middle Atmosphere Program (MAP), a project was instituted to study the dynamics of the Middle Atmosphere in the Southern Hemisphere (MASH). A pre-MASH workshop was held with two aims: comparison of Southern Hemisphere dynamical quantities derived from various archives of satellite data; and assessing the impact of different base-level height information on such derived quantities. The dynamical quantities examined included geopotential height, zonal wind, potential vorticity, eddy heat and momentum fluxes, and Eliassen-Palm fluxes. It was found that while there was usually qualitative agreement between the different sets of fields, substantial quantitative differences were evident, particularly in high latitudes. The fidelity of the base-level analysis was found to be of prime importance in calculating derived quantities - especially the Eliassen-Palm flux divergence and potential vorticity. Improvements in base-level analyses are recommended. In particular, quality controls should be introduced to remove spurious localized features from analyses, and information from all Antarctic radiosondes should be utilized where possible. Caution in drawing quantitative inferences from satellite data for the middle atmosphere of the Southern Hemisphere is advised
    corecore