2,335,734 research outputs found

    Show me the code: Spatial analysis and open source

    Get PDF
    This paper considers the intersection of academic spatial analysis with the open source revolution. Its basic premise is that the potential for cross-fertilization between the two is rich, yet some misperceptions about these two communities pose challenges to realizing these opportunities. The paper provides a primer on the open source movement for academicians with an eye towards correcting these misperceptions. It identifies a number of ways in which increased adoption of open source practices in spatial analysis can enhance the development of the next generation of tools and the wider practice of scientific research and education.open source; spatial analysis

    Code Flows: Visualizing Structural Evolution of Source Code

    Get PDF
    Understanding detailed changes done to source code is of great importance in software maintenance. We present Code Flows, a method to visualize the evolution of source code geared to the understanding of fine and mid-level scale changes across several file versions. We enhance an existing visual metaphor to depict software structure changes with techniques that emphasize both following unchanged code as well as detecting and highlighting important events such as code drift, splits, merges, insertions and deletions. The method is illustrated with the analysis of a real-world C++ code system.

    On the Effect of Semantically Enriched Context Models on Software Modularization

    Full text link
    Many of the existing approaches for program comprehension rely on the linguistic information found in source code, such as identifier names and comments. Semantic clustering is one such technique for modularization of the system that relies on the informal semantics of the program, encoded in the vocabulary used in the source code. Treating the source code as a collection of tokens loses the semantic information embedded within the identifiers. We try to overcome this problem by introducing context models for source code identifiers to obtain a semantic kernel, which can be used for both deriving the topics that run through the system as well as their clustering. In the first model, we abstract an identifier to its type representation and build on this notion of context to construct contextual vector representation of the source code. The second notion of context is defined based on the flow of data between identifiers to represent a module as a dependency graph where the nodes correspond to identifiers and the edges represent the data dependencies between pairs of identifiers. We have applied our approach to 10 medium-sized open source Java projects, and show that by introducing contexts for identifiers, the quality of the modularization of the software systems is improved. Both of the context models give results that are superior to the plain vector representation of documents. In some cases, the authoritativeness of decompositions is improved by 67%. Furthermore, a more detailed evaluation of our approach on JEdit, an open source editor, demonstrates that inferred topics through performing topic analysis on the contextual representations are more meaningful compared to the plain representation of the documents. The proposed approach in introducing a context model for source code identifiers paves the way for building tools that support developers in program comprehension tasks such as application and domain concept location, software modularization and topic analysis
    corecore