8,195 research outputs found

    OntoMaven: Maven-based Ontology Development and Management of Distributed Ontology Repositories

    Full text link
    In collaborative agile ontology development projects support for modular reuse of ontologies from large existing remote repositories, ontology project life cycle management, and transitive dependency management are important needs. The Apache Maven approach has proven its success in distributed collaborative Software Engineering by its widespread adoption. The contribution of this paper is a new design artifact called OntoMaven. OntoMaven adopts the Maven-based development methodology and adapts its concepts to knowledge engineering for Maven-based ontology development and management of ontology artifacts in distributed ontology repositories.Comment: Pre-print submission to 9th International Workshop on Semantic Web Enabled Software Engineering (SWESE2013). Berlin, Germany, December 2-5, 201

    What is the Connection Between Issues, Bugs, and Enhancements? (Lessons Learned from 800+ Software Projects)

    Full text link
    Agile teams juggle multiple tasks so professionals are often assigned to multiple projects, especially in service organizations that monitor and maintain a large suite of software for a large user base. If we could predict changes in project conditions changes, then managers could better adjust the staff allocated to those projects.This paper builds such a predictor using data from 832 open source and proprietary applications. Using a time series analysis of the last 4 months of issues, we can forecast how many bug reports and enhancement requests will be generated next month. The forecasts made in this way only require a frequency count of this issue reports (and do not require an historical record of bugs found in the project). That is, this kind of predictive model is very easy to deploy within a project. We hence strongly recommend this method for forecasting future issues, enhancements, and bugs in a project.Comment: Accepted to 2018 International Conference on Software Engineering, at the software engineering in practice track. 10 pages, 10 figure

    We Don't Need Another Hero? The Impact of "Heroes" on Software Development

    Full text link
    A software project has "Hero Developers" when 80% of contributions are delivered by 20% of the developers. Are such heroes a good idea? Are too many heroes bad for software quality? Is it better to have more/less heroes for different kinds of projects? To answer these questions, we studied 661 open source projects from Public open source software (OSS) Github and 171 projects from an Enterprise Github. We find that hero projects are very common. In fact, as projects grow in size, nearly all project become hero projects. These findings motivated us to look more closely at the effects of heroes on software development. Analysis shows that the frequency to close issues and bugs are not significantly affected by the presence of project type (Public or Enterprise). Similarly, the time needed to resolve an issue/bug/enhancement is not affected by heroes or project type. This is a surprising result since, before looking at the data, we expected that increasing heroes on a project will slow down howfast that project reacts to change. However, we do find a statistically significant association between heroes, project types, and enhancement resolution rates. Heroes do not affect enhancement resolution rates in Public projects. However, in Enterprise projects, the more heroes increase the rate at which project complete enhancements. In summary, our empirical results call for a revision of a long-held truism in software engineering. Software heroes are far more common and valuable than suggested by the literature, particularly for medium to large Enterprise developments. Organizations should reflect on better ways to find and retain more of these heroesComment: 8 pages + 1 references, Accepted to International conference on Software Engineering - Software Engineering in Practice, 201

    Beyond Surveys: Analyzing Software Development Artifacts to Assess Teaching Efforts

    Full text link
    This Innovative Practice Full Paper presents an approach of using software development artifacts to gauge student behavior and the effectiveness of changes to curriculum design. There is an ongoing need to adapt university courses to changing requirements and shifts in industry. As an educator it is therefore vital to have access to methods, with which to ascertain the effects of curriculum design changes. In this paper, we present our approach of analyzing software repositories in order to gauge student behavior during project work. We evaluate this approach in a case study of a university undergraduate software development course teaching agile development methodologies. Surveys revealed positive attitudes towards the course and the change of employed development methodology from Scrum to Kanban. However, surveys were not usable to ascertain the degree to which students had adapted their workflows and whether they had done so in accordance with course goals. Therefore, we analyzed students' software repository data, which represents information that can be collected by educators to reveal insights into learning successes and detailed student behavior. We analyze the software repositories created during the last five courses, and evaluate differences in workflows between Kanban and Scrum usage
    • …
    corecore