481,640 research outputs found

    Local Visual Microphones: Improved Sound Extraction from Silent Video

    Full text link
    Sound waves cause small vibrations in nearby objects. A few techniques exist in the literature that can extract sound from video. In this paper we study local vibration patterns at different image locations. We show that different locations in the image vibrate differently. We carefully aggregate local vibrations and produce a sound quality that improves state-of-the-art. We show that local vibrations could have a time delay because sound waves take time to travel through the air. We use this phenomenon to estimate sound direction. We also present a novel algorithm that speeds up sound extraction by two to three orders of magnitude and reaches real-time performance in a 20KHz video.Comment: Accepted to BMVC 201

    Sound waves in hadronic matter

    Get PDF
    We argue that recent high energy CERN LHC experiments on transverse momenta distributions of produced particles provide us new, so far unnoticed and not fully appreciated, information on the underlying production processes. To this end we concentrate on the small (but persistent) log-periodic oscillations decorating the observed pTp_T spectra and visible in the measured ratios R=σdata(pT)/σfit(pT)R = \sigma_{data}\left( p_T\right)/\sigma_{fit}\left( p_T\right). Because such spectra are described by quasi-power-like formulas characterised by two parameters: the power index nn and scale parameter TT (usually identified with temperature TT), the observed log-periodic behaviour of the ratios RR can originate either from suitable modifications of nn or TT (or both, but such a possibility is not discussed). In the first case nn becomes a complex number and this can be related to scale invariance in the system, in the second the scale parameter TT exhibits itself log-periodic oscillations which can be interpreted as the presence of some kind of sound waves forming in the collision system during the collision process, the wave number of which has a so-called self similar solution of the second kind. Because the first case was already widely discussed we concentrate on the second one and on its possible experimental consequences.Comment: 10 pages, 4 figures. Presented at the XLVII International Symposium on Multiparticle Dynamics (ISMD2017) held in Tlaxcala City, Mexico, during September 11-15, 201

    Sound Waves in (2+1) Dimensional Holographic Magnetic Fluids

    Full text link
    We use the AdS/CFT correspondence to study propagation of sound waves in strongly coupled (2+1) dimensional conformal magnetic fluids. Our computation provides a nontrivial consistency check of the viscous magneto-hydrodynamics of Hartnoll-Kovtun-Muller-Sachdev to leading order in the external field. Depending on the behavior of the magnetic field in the hydrodynamic limit, we show that it can lead to further attenuation of sound waves in the (2+1) dimensional conformal plasma, or reduce the speed of sound. We present both field theory and dual supergravity descriptions of these phenomena. While to the leading order in momenta the dispersion of the sound waves obtained from the dual supergravity description agrees with the one predicted from field theory, we find a discrepancy at higher order. This suggests that further corrections to HKMS magneto-hydrodynamics are necessary.Comment: 32 pages, LaTeX; minor corrections, references added; an error in the boundary conditions fixed, a slight change in the result

    Acoustic excitations and elastic heterogeneities in disordered solids

    Full text link
    In the recent years, much attention has been devoted to the inhomogeneous nature of the mechanical response at the nano-scale in disordered solids. Clearly, the elastic heterogeneities that have been characterized in this context are expected to strongly impact the nature of the sound waves which, in contrast to the case of perfect crystals, cannot be completely rationalized in terms of phonons. Building on previous work on a toy model showing an amorphisation transition [Mizuno H, Mossa S, Barrat JL (2013) EPL {\bf 104}:56001], we investigate the relationship between sound waves and elastic heterogeneities in a unified framework, by continuously interpolating from the perfect crystal, through increasingly defective phases, to fully developed glasses. We provide strong evidence of a direct correlation between sound waves features and the extent of the heterogeneous mechanical response at the nano-scale

    On wavenumber spectra for sound within subsonic jets

    Full text link
    This paper clarifies the nature of sound spectra within subsonic jets. Three problems, of increasing complexity, are presented. Firstly, a point source is placed in a two-dimensional plug flow and the sound field is obtained analytically. Secondly, a point source is embedded in a diverging axisymmetric jet and the sound field is obtained by solving the linearised Euler equations. Finally, an analysis of the acoustic waves propagating through a turbulent jet obtained by direct numerical simulation is presented. In each problem, the pressure or density field are analysed in the frequency-wavenumber domain. It is found that acoustic waves can be classified into three main frequency-dependent groups. A physical justification is provided for this classification. The main conclusion is that, at low Strouhal numbers, acoustic waves satisfy the d'Alembertian dispersion relation.Comment: 20 pages, 9 figure

    Energy localisation and frequency analysis in the locust ear

    Get PDF
    Animal ears are exquisitely adapted to capture sound energy and perform signal analysis. Studying the ear of the locust, we show how frequency signal analysis can be performed solely by using the structural features of the tympanum. Incident sound waves generate mechanical vibrational waves that travel across the tympanum. These waves shoal in a tsunami like fashion, resulting in energy localisation that focuses vibrations onto the mechanosensory neurons in a frequency dependent manner. Using finite element analysis, we demonstrate that two mechanical properties of the locust tympanum, distributed thickness and tension, are necessary and sufficient to generate frequency-dependent energy localisation. <br/

    Spin current induced by the sound wave

    Full text link
    The kinetics of conduction electrons interacting with the field of sound waves in a constant magnetic field is studied. It is shown that the longitudinal sound wave propagation occurs transverse spin conductivity, which has a resonant character.Comment: e.g.:4page
    corecore