13,812 research outputs found

    Rehabilitation robot cell for multimodal standing-up motion augmentation

    Get PDF
    The paper presents a robot cell for multimodal standing-up motion augmentation. The robot cell is aimed at augmenting the standing-up capabilities of impaired or paraplegic subjects. The setup incorporates the rehabilitation robot device, functional electrical stimulation system, measurement instrumentation and cognitive feedback system. For controlling the standing-up process a novel approach was developed integrating the voluntary activity of a person in the control scheme of the rehabilitation robot. The simulation results demonstrate the possibility of ā€œpatient-drivenā€ robot-assisted standing-up training. Moreover, to extend the system capabilities, the audio cognitive feedback is aimed to guide the subject throughout rising. For the feedback generation a granular synthesis method is utilized displaying high-dimensional, dynamic data. The principle of operation and example sonification in standing-up are presented. In this manner, by integrating the cognitive feedback and ā€œpatient-drivenā€ actuation systems, an effective motion augmentation system is proposed in which the motion coordination is under the voluntary control of the user

    Three-Dimensional Numerical Modeling of Acoustic Trapping in Glass Capillaries

    Get PDF
    Acoustic traps are used to capture and handle suspended microparticles and cells in microfluidic applications. A particular simple and much-used acoustic trap consists of a commercially available, millimeter-sized, liquid-filled glass capillary actuated by a piezoelectric transducer. Here, we present a three-dimensional numerical model of the acoustic pressure field in the liquid coupled to the displacement field of the glass wall, taking into account mixed standing and traveling waves as well as absorption. The model predicts resonance modes well suited for acoustic trapping, their frequencies and quality factors, the magnitude of the acoustic radiation force on a single test particle as a function of position, and the resulting acoustic retention force of the trap. We show that the model predictions are in agreement with published experimental results, and we discuss how improved and more stable acoustic trapping modes might be obtained using the model as a design tool.Comment: 13 pages, 15 pdf figures, pdfLatex/Revte

    Planar microfluidics - liquid handling without walls

    Full text link
    The miniaturization and integration of electronic circuitry has not only made the enormous increase in performance of semiconductor devices possible but also spawned a myriad of new products and applications ranging from a cellular phone to a personal computer. Similarly, the miniaturization and integration of chemical and biological processes will revolutionize life sciences. Drug design and diagnostics in the genomic era require reliable and cost effective high throughput technologies which can be integrated and allow for a massive parallelization. Microfluidics is the core technology to realize such miniaturized laboratories with feature sizes on a submillimeter scale. Here, we report on a novel microfluidic technology meeting the basic requirements for a microfluidic processor analogous to those of its electronic counterpart: Cost effective production, modular design, high speed, scalability and programmability
    • ā€¦
    corecore