138,377 research outputs found

    Optimistic Value Iteration

    Get PDF
    Markov decision processes are widely used for planning and verification in settings that combine controllable or adversarial choices with probabilistic behaviour. The standard analysis algorithm, value iteration, only provides a lower bound on unbounded probabilities or reward values. Two "sound" variations, which also deliver an upper bound, have recently appeared. In this paper, we present optimistic value iteration, a new sound approach that leverages value iteration's ability to usually deliver tight lower bounds: we obtain a lower bound via standard value iteration, use the result to "guess" an upper bound, and prove the latter's correctness. Optimistic value iteration is easy to implement, does not require extra precomputations or a priori state space transformations, and works for computing reachability probabilities as well as expected rewards. It is also fast, as we show via an extensive experimental evaluation using our publicly available implementation within the Modest Toolset

    Optimistic Value Iteration

    Get PDF
    Markov decision processes are widely used for planning and verification in settings that combine controllable or adversarial choices with probabilistic behaviour. The standard analysis algorithm, value iteration, only provides lower bounds on infinite-horizon probabilities and rewards. Two “sound” variations, which also deliver an upper bound, have recently appeared. In this paper, we present a new sound approach that leverages value iteration’s ability to usually deliver good lower bounds: we obtain a lower bound via standard value iteration, use the result to “guess” an upper bound, and prove the latter’s correctness. We present this optimistic value iteration approach for computing reachability probabilities as well as expected rewards. It is easy to implement and performs well, as we show via an extensive experimental evaluation using our implementation within the mcsta model checker of the Modest Toolset

    Finite-Sample Analysis of Bellman Residual Minimization

    Get PDF
    International audienceWe consider the Bellman residual minimization approach for solving discounted Markov decision problems, where we assume that a generative model of the dynamics and rewards is available. At each policy iteration step, an approximation of the value function for the current policy is obtained by minimizing an empirical Bellman residual defined on a set of n states drawn i.i.d. from a distribution, the immediate rewards, and the next states sampled from the model. Our main result is a generalization bound for the Bellman residual in linear approximation spaces. In particular, we prove that the empirical Bellman residual approaches the true (quadratic) Bellman residual with a rate of order O(1/sqrt((n)). This result implies that minimizing the empirical residual is indeed a sound approach for the minimization of the true Bellman residual which guarantees a good approximation of the value function for each policy. Finally, we derive performance bounds for the resulting approximate policy iteration algorithm in terms of the number of samples n and a measure of how well the function space is able to approximate the sequence of value functions.

    Forensic analysis of a Sony PlayStation 4: A first look

    Get PDF
    The primary function of a games console is that of an entertainment system. However the latest iteration of these consoles has added a number of new interactive features that may prove of value to the digital investigator. This paper highlights the value of these consoles, in particular Sony\u27s latest version of their PlayStation. This console provides a number of features including web browsing, downloading of material and chat functionality; all communication features that will be of interest to forensic investigators. In this paper we undertake an initial investigation of the PlayStation 4 games console. This paper identifies potential information sources of forensic value with the PlayStation 4 and provides a method for acquiring information in a forensically sound manner. In particular issues with the online and offline investigative process are also identified

    Enforcing Termination of Interprocedural Analysis

    Full text link
    Interprocedural analysis by means of partial tabulation of summary functions may not terminate when the same procedure is analyzed for infinitely many abstract calling contexts or when the abstract domain has infinite strictly ascending chains. As a remedy, we present a novel local solver for general abstract equation systems, be they monotonic or not, and prove that this solver fails to terminate only when infinitely many variables are encountered. We clarify in which sense the computed results are sound. Moreover, we show that interprocedural analysis performed by this novel local solver, is guaranteed to terminate for all non-recursive programs --- irrespective of whether the complete lattice is infinite or has infinite strictly ascending or descending chains

    A Multi-Grid Iterative Method for Photoacoustic Tomography

    Get PDF
    Inspired by the recent advances on minimizing nonsmooth or bound-constrained convex functions on models using varying degrees of fidelity, we propose a line search multigrid (MG) method for full-wave iterative image reconstruction in photoacoustic tomography (PAT) in heterogeneous media. To compute the search direction at each iteration, we decide between the gradient at the target level, or alternatively an approximate error correction at a coarser level, relying on some predefined criteria. To incorporate absorption and dispersion, we derive the analytical adjoint directly from the first-order acoustic wave system. The effectiveness of the proposed method is tested on a total-variation penalized Iterative Shrinkage Thresholding algorithm (ISTA) and its accelerated variant (FISTA), which have been used in many studies of image reconstruction in PAT. The results show the great potential of the proposed method in improving speed of iterative image reconstruction
    • …
    corecore