2 research outputs found

    GEVO: GPU Code Optimization using Evolutionary Computation

    Full text link
    GPUs are a key enabler of the revolution in machine learning and high performance computing, functioning as de facto co-processors to accelerate large-scale computation. As the programming stack and tool support have matured, GPUs have also become accessible to programmers, who may lack detailed knowledge of the underlying architecture and fail to fully leverage the GPU's computation power. GEVO (Gpu optimization using EVOlutionary computation) is a tool for automatically discovering optimization opportunities and tuning the performance of GPU kernels in the LLVM representation. GEVO uses population-based search to find edits to GPU code compiled to LLVM-IR and improves performance on desired criteria while retaining required functionality. We demonstrate that GEVO improves the execution time of the GPU programs in the Rodinia benchmark suite and the machine learning models, SVM and ResNet18, on NVIDIA Tesla P100. For the Rodinia benchmarks, GEVO improves GPU kernel runtime performance by an average of 49.48% and by as much as 412% over the fully compiler-optimized baseline. If kernel output accuracy is relaxed to tolerate up to 1% error, GEVO can find kernel variants that outperform the baseline version by an average of 51.08%. For the machine learning workloads, GEVO achieves kernel performance improvement for SVM on the MNIST handwriting recognition (3.24X) and the a9a income prediction (2.93X) datasets with no loss of model accuracy. GEVO achieves 1.79X kernel performance improvement on image classification using ResNet18/CIFAR-10, with less than 1% model accuracy reduction

    Synthesizing Safe and Efficient Kernel Extensions for Packet Processing

    Full text link
    Extended Berkeley Packet Filter (BPF) has emerged as a powerful method to extend packet-processing functionality in the Linux operating system. BPF allows users to write code in high-level languages (like C or Rust) and execute them at specific hooks in the kernel, such as the network device driver. To ensure safe execution of a user-developed BPF program in kernel context, Linux uses an in-kernel static checker. The checker allows a program to execute only if it can prove that the program is crash-free, always accesses memory within safe bounds, and avoids leaking kernel data. BPF programming is not easy. One, even modest-sized BPF programs are deemed too large to analyze and rejected by the kernel checker. Two, the kernel checker may incorrectly determine that a BPF program exhibits unsafe behaviors. Three, even small performance optimizations to BPF code (e.g., 5% gains) must be meticulously hand-crafted by expert developers. Traditional optimizing compilers for BPF are often inadequate since the kernel checker's safety constraints are incompatible with rule-based optimizations. We present K2, a program-synthesis-based compiler that automatically optimizes BPF bytecode with formal correctness and safety guarantees. K2 produces code with 6--26% reduced size, 1.36%--55.03% lower average packet-processing latency, and 0--4.75% higher throughput (packets per second per core) relative to the best clang-compiled program, across benchmarks drawn from Cilium, Facebook, and the Linux kernel. K2 incorporates several domain-specific techniques to make synthesis practical by accelerating equivalence-checking of BPF programs by 6 orders of magnitude
    corecore