6 research outputs found

    Sorting suffixes of a text via its Lyndon Factorization

    Full text link
    The process of sorting the suffixes of a text plays a fundamental role in Text Algorithms. They are used for instance in the constructions of the Burrows-Wheeler transform and the suffix array, widely used in several fields of Computer Science. For this reason, several recent researches have been devoted to finding new strategies to obtain effective methods for such a sorting. In this paper we introduce a new methodology in which an important role is played by the Lyndon factorization, so that the local suffixes inside factors detected by this factorization keep their mutual order when extended to the suffixes of the whole word. This property suggests a versatile technique that easily can be adapted to different implementative scenarios.Comment: Submitted to the Prague Stringology Conference 2013 (PSC 2013

    Sorting suffixes of a text via its Lyndon Factorization

    No full text
    The process of sorting the suffixes of a text plays a fundamental role in Text Algorithms. They are used for instance in the constructions of the Burrows-Wheeler transform and the suffix array, widely used in several fields of Computer Science. For this reason, several recent researches have been devoted to finding new strategies to obtain effective methods for such a sorting. In this paper we introduce a new methodology in which an important role is played by the Lyndon factorization, so that the local suffixes inside factors detected by this factorization keep their mutual order when extended to the suffixes of the whole word. This property suggests a versatile technique that easily can be adapted to different implementative scenarios

    Algorithms and Lower Bounds for Ordering Problems on Strings

    Get PDF
    This dissertation presents novel algorithms and conditional lower bounds for a collection of string and text-compression-related problems. These results are unified under the theme of ordering constraint satisfaction. Utilizing the connections to ordering constraint satisfaction, we provide hardness results and algorithms for the following: recognizing a type of labeled graph amenable to text-indexing known as Wheeler graphs, minimizing the number of maximal unary substrings occurring in the Burrows-Wheeler Transformation of a text, minimizing the number of factors occurring in the Lyndon factorization of a text, and finding an optimal reference string for relative Lempel-Ziv encoding

    Efficient string algorithmics across alphabet realms

    Get PDF
    Stringology is a subfield of computer science dedicated to analyzing and processing sequences of symbols. It plays a crucial role in various applications, including lossless compression, information retrieval, natural language processing, and bioinformatics. Recent algorithms often assume that the strings to be processed are over polynomial integer alphabet, i.e., each symbol is an integer that is at most polynomial in the lengths of the strings. In contrast to that, the earlier days of stringology were shaped by the weaker comparison model, in which strings can only be accessed by mere equality comparisons of symbols, or (if the symbols are totally ordered) order comparisons of symbols. Nowadays, these flavors of the comparison model are respectively referred to as general unordered alphabet and general ordered alphabet. In this dissertation, we dive into the realm of both integer alphabets and general alphabets. We present new algorithms and lower bounds for classic problems, including Lempel-Ziv compression, computing the Lyndon array, and the detection of squares and runs. Our results show that, instead of only assuming the standard model of computation, it is important to also consider both weaker and stronger models. Particularly, we should not discard the older and weaker comparison-based models too quickly, as they are not only powerful theoretical tools, but also lead to fast and elegant practical solutions, even by today's standards
    corecore