13,478 research outputs found

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Utilitarian resource assignment

    Get PDF
    This paper studies a resource allocation problem introduced by Koutsoupias and Papadimitriou. The scenario is modelled as a multiple-player game in which each player selects one of a finite number of known resources. The cost to the player is the total weight of all players who choose that resource, multiplied by the ``delay'' of that resource. Recent papers have studied the Nash equilibria and social optima of this game in terms of the L∞L_\infty cost metric, in which the social cost is taken to be the maximum cost to any player. We study the L1L_1 variant of this game, in which the social cost is taken to be the sum of the costs to the individual players, rather than the maximum of these costs. We give bounds on the size of the coordination ratio, which is the ratio between the social cost incurred by selfish behavior and the optimal social cost; we also study the algorithmic problem of finding optimal (lowest-cost) assignments and Nash Equilibria. Additionally, we obtain bounds on the ratio between alternative Nash equilibria for some special cases of the problem.Comment: 19 page
    • …
    corecore