56,995 research outputs found

    Decision Making for Rapid Information Acquisition in the Reconnaissance of Random Fields

    Full text link
    Research into several aspects of robot-enabled reconnaissance of random fields is reported. The work has two major components: the underlying theory of information acquisition in the exploration of unknown fields and the results of experiments on how humans use sensor-equipped robots to perform a simulated reconnaissance exercise. The theoretical framework reported herein extends work on robotic exploration that has been reported by ourselves and others. Several new figures of merit for evaluating exploration strategies are proposed and compared. Using concepts from differential topology and information theory, we develop the theoretical foundation of search strategies aimed at rapid discovery of topological features (locations of critical points and critical level sets) of a priori unknown differentiable random fields. The theory enables study of efficient reconnaissance strategies in which the tradeoff between speed and accuracy can be understood. The proposed approach to rapid discovery of topological features has led in a natural way to to the creation of parsimonious reconnaissance routines that do not rely on any prior knowledge of the environment. The design of topology-guided search protocols uses a mathematical framework that quantifies the relationship between what is discovered and what remains to be discovered. The quantification rests on an information theory inspired model whose properties allow us to treat search as a problem in optimal information acquisition. A central theme in this approach is that "conservative" and "aggressive" search strategies can be precisely defined, and search decisions regarding "exploration" vs. "exploitation" choices are informed by the rate at which the information metric is changing.Comment: 34 pages, 20 figure

    Entropy production and isotropization in Yang-Mills theory with use of quantum distribution function

    Get PDF
    We investigate thermalization process in relativistic heavy ion collisions in terms of the Husimi-Wehrl (HW) entropy defined with the Husimi function, a quantum distribution function in a phase space. We calculate the semiclassical time evolution of the HW entropy in Yang-Mills field theory with the phenomenological initial field configuration known as the McLerran-Venugopalan model in a non-expanding geometry, which has instabilty triggered by initial field fluctuations. HW-entropy production implies the thermalization of the system and it reflects the underlying dynamics such as chaoticity and instability. By comparing the production rate with the Kolmogorov-Sina\"i rate, we find that the HW entropy production rate is significantly larger than that expected from chaoticity. We also show that the HW entropy is finally saturated when the system reaches a quasi-stationary state. The saturation time of the HW entropy is comparable with that of pressure isotropization, which is around 11 fm/c in the present calculation in the non-expanding geometry.Comment: 17 pages, 5 figure

    From Wires to Cosmology

    Full text link
    We provide a statistical framework for characterizing stochastic particle production in the early universe via a precise correspondence to current conduction in wires with impurities. Our approach is particularly useful when the microphysics is uncertain and the dynamics are complex, but only coarse-grained information is of interest. We study scenarios with multiple interacting fields and derive the evolution of the particle occupation numbers from a Fokker-Planck equation. At late times, the typical occupation numbers grow exponentially which is the analog of Anderson localization for disordered wires. Some statistical features of the occupation numbers show hints of universality in the limit of a large number of interactions and/or a large number of fields. For test cases, excellent agreement is found between our analytic results and numerical simulations.Comment: v3: minor changes and references added; matches published version in JCA

    A stroll along the gamma

    Full text link
    We provide the first in-depth study of the "smart path" interpolation between an arbitrary probability measure and the gamma-(α,λ)(\alpha, \lambda) distribution. We propose new explicit representation formulae for the ensuing process as well as a new notion of relative Fisher information with a gamma target distribution. We use these results to prove a differential and an integrated De Bruijn identity which hold under minimal conditions, hereby extending the classical formulae which follow from Bakry, Emery and Ledoux's Γ\Gamma-calculus. Exploiting a specific representation of the "smart path", we obtain a new proof of the logarithmic Sobolev inequality for the gamma law with α1/2\alpha\geq 1/2 as well as a new type of HSI inequality linking relative entropy, Stein discrepancy and standardized Fisher information for the gamma law with α1/2\alpha\geq 1/2.Comment: Typos correcte
    corecore