409 research outputs found

    Exploiting lattice structures in shape grammar implementations

    Get PDF
    The ability to work with ambiguity and compute new designs based on both defined and emergent shapes are unique advantages of shape grammars. Realizing these benefits in design practice requires the implementation of general purpose shape grammar interpreters that support: (a) the detection of arbitrary subshapes in arbitrary shapes and (b) the application of shape rules that use these subshapes to create new shapes. The complexity of currently available interpreters results from their combination of shape computation (for subshape detection and the application of rules) with computational geometry (for the geometric operations need to generate new shapes). This paper proposes a shape grammar implementation method for three-dimensional circular arcs represented as rational quadratic Bézier curves based on lattice theory that reduces this complexity by separating steps in a shape computation process from the geometrical operations associated with specific grammars and shapes. The method is demonstrated through application to two well-known shape grammars: Stiny's triangles grammar and Jowers and Earl's trefoil grammar. A prototype computer implementation of an interpreter kernel has been built and its application to both grammars is presented. The use of Bézier curves in three dimensions opens the possibility to extend shape grammar implementations to cover the wider range of applications that are needed before practical implementations for use in real life product design and development processes become feasible

    Polynomial cubic splines with tension properties

    Get PDF
    In this paper we present a new class of spline functions with tension properties. These splines are composed by polynomial cubic pieces and therefore are conformal to the standard, NURBS based CAD/CAM systems

    Discontinuities in numerical radiative transfer

    Full text link
    Observations and magnetohydrodynamic simulations of solar and stellar atmospheres reveal an intermittent behavior or steep gradients in physical parameters, such as magnetic field, temperature, and bulk velocities. The numerical solution of the stationary radiative transfer equation is particularly challenging in such situations, because standard numerical methods may perform very inefficiently in the absence of local smoothness. However, a rigorous investigation of the numerical treatment of the radiative transfer equation in discontinuous media is still lacking. The aim of this work is to expose the limitations of standard convergence analyses for this problem and to identify the relevant issues. Moreover, specific numerical tests are performed. These show that discontinuities in the atmospheric physical parameters effectively induce first-order discontinuities in the radiative transfer equation, reducing the accuracy of the solution and thwarting high-order convergence. In addition, a survey of the existing numerical schemes for discontinuous ordinary differential systems and interpolation techniques for discontinuous discrete data is given, evaluating their applicability to the radiative transfer problem

    Cournot oligopoly interval games

    Get PDF
    In this paper we consider cooperative Cournot oligopoly games. Following Chander and Tulkens (1997) we assume that firms react to a deviating coalition by choosing individual best reply strategies. Lardon (2009) shows that if the inverse demand function is not differentiable, it is not always possible to define a Cournot oligopoly TU(Transferable Utility)-game. In this paper, we prove that we can always specify a Cournot oligopoly interval game. Furthermore, we deal with the problem of the non-emptiness of two induced cores: the interval gamma-core and the standard gamma-core. To this end, we use a decision theory criterion, the Hurwicz criterion (Hurwicz 1951), that consists in combining, for any coalition, the worst and the better worths that it can obtain in its worth interval. The first result states that the interval gamma-core is non-empty if and only if the oligopoly TU-game associated with the better worth of every coalition in its worth interval admits a non-empty gamma-core. However, we show that even for a very simple oligopoly situation, this condition fails to be satisfied. The second result states that the standard gamma-core is non-empty if and only if the oligopoly TU- game associated with the worst worth of every coalition in its worth interval admits a nonempty gamma-core. Moreover, we give some properties on every individual profit function and every cost function under which this condition always holds, what substantially extends the gamma-core existence results in Lardon (2009).Cournot oligopoly interval game; Interval gamma-core; Standard gamma-core; Hurwicz criterion;

    Rational Bézier curves with infinitely many integral points

    Get PDF
    summary:In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients

    Interpolation of tracking data in a fluid environment

    Get PDF
    Interpolation of geolocation or Argos tracking data is a necessity for habitat use analyses of marine vertebrates. In a fluid marine environment, characterized by curvilinear structures, linearly interpolated track data are not realistic. Based on these two facts, we interpolated tracking data from albatrosses, penguins, boobies, sea lions, fur seals and elephant seals using six mathematical algorithms. Given their popularity in mathematical computing, we chose Bézier, hermite and cubic splines, in addition to a commonly used linear algorithm to interpolate data. Performance of interpolation methods was compared with different temporal resolutions representative of the less-precise geolocation and the more-precise Argos tracking techniques. Parameters from interpolated sub-sampled tracks were compared with those obtained from intact tracks. Average accuracy of the interpolated location was not affected by the interpolation method and was always within the precision of the tracking technique used. However, depending on the species tested, some curvilinear interpolation algorithms produced greater occurrences of more accurate locations, compared with the linear interpolation method. Total track lengths were consistently underestimated but were always more accurate using curvilinear interpolation than linear interpolation. Curvilinear algorithms are safe to use because accuracy, shape and length of the tracks are either not different or are slightly enhanced and because analyses always remain conservative. The choice of the curvilinear algorithm does not affect the resulting track dramatically so it should not preclude their use. We thus recommend using curvilinear interpolation techniques because of the more realistic fluid movements of animals. We also provide some guidelines for choosing an algorithm that is most likely to maximize track quality for different types of marine vertebrates
    corecore