21,683 research outputs found

    On the convergence of spectral deferred correction methods

    Get PDF
    In this work we analyze the convergence properties of the Spectral Deferred Correction (SDC) method originally proposed by Dutt et al. [BIT, 40 (2000), pp. 241--266]. The framework for this high-order ordinary differential equation (ODE) solver is typically described wherein a low-order approximation (such as forward or backward Euler) is lifted to higher order accuracy by applying the same low-order method to an error equation and then adding in the resulting defect to correct the solution. Our focus is not on solving the error equation to increase the order of accuracy, but on rewriting the solver as an iterative Picard integral equation solver. In doing so, our chief finding is that it is not the low-order solver that picks up the order of accuracy with each correction, but it is the underlying quadrature rule of the right hand side function that is solely responsible for picking up additional orders of accuracy. Our proofs point to a total of three sources of errors that SDC methods carry: the error at the current time point, the error from the previous iterate, and the numerical integration error that comes from the total number of quadrature nodes used for integration. The second of these two sources of errors is what separates SDC methods from Picard integral equation methods; our findings indicate that as long as difference between the current and previous iterate always gets multiplied by at least a constant multiple of the time step size, then high-order accuracy can be found even if the underlying "solver" is inconsistent the underlying ODE. From this vantage, we solidify the prospects of extending spectral deferred correction methods to a larger class of solvers to which we present some examples.Comment: 29 page

    Factorizing the Stochastic Galerkin System

    Full text link
    Recent work has explored solver strategies for the linear system of equations arising from a spectral Galerkin approximation of the solution of PDEs with parameterized (or stochastic) inputs. We consider the related problem of a matrix equation whose matrix and right hand side depend on a set of parameters (e.g. a PDE with stochastic inputs semidiscretized in space) and examine the linear system arising from a similar Galerkin approximation of the solution. We derive a useful factorization of this system of equations, which yields bounds on the eigenvalues, clues to preconditioning, and a flexible implementation method for a wide array of problems. We complement this analysis with (i) a numerical study of preconditioners on a standard elliptic PDE test problem and (ii) a fluids application using existing CFD codes; the MATLAB codes used in the numerical studies are available online.Comment: 13 pages, 4 figures, 2 table

    Approximation of the scattering amplitude

    Get PDF
    The simultaneous solution of Ax=b and ATy=g is required in a number of situations. Darmofal and Lu have proposed a method based on the Quasi-Minimal residual algorithm (QMR). We will introduce a technique for the same purpose based on the LSQR method and show how its performance can be improved when using the Generalized LSQR method. We further show how preconditioners can be introduced to enhance the speed of convergence and discuss different preconditioners that can be used. The scattering amplitude gTx, a widely used quantity in signal processing for example, has a close connection to the above problem since x represents the solution of the forward problem and g is the right hand side of the adjoint system. We show how this quantity can be efficiently approximated using Gauss quadrature and introduce a Block-Lanczos process that approximates the scattering amplitude and which can also be used with preconditioners

    A fluctuating boundary integral method for Brownian suspensions

    Full text link
    We present a fluctuating boundary integral method (FBIM) for overdamped Brownian Dynamics (BD) of two-dimensional periodic suspensions of rigid particles of complex shape immersed in a Stokes fluid. We develop a novel approach for generating Brownian displacements that arise in response to the thermal fluctuations in the fluid. Our approach relies on a first-kind boundary integral formulation of a mobility problem in which a random surface velocity is prescribed on the particle surface, with zero mean and covariance proportional to the Green's function for Stokes flow (Stokeslet). This approach yields an algorithm that scales linearly in the number of particles for both deterministic and stochastic dynamics, handles particles of complex shape, achieves high order of accuracy, and can be generalized to three dimensions and other boundary conditions. We show that Brownian displacements generated by our method obey the discrete fluctuation-dissipation balance relation (DFDB). Based on a recently-developed Positively Split Ewald method [A. M. Fiore, F. Balboa Usabiaga, A. Donev and J. W. Swan, J. Chem. Phys., 146, 124116, 2017], near-field contributions to the Brownian displacements are efficiently approximated by iterative methods in real space, while far-field contributions are rapidly generated by fast Fourier-space methods based on fluctuating hydrodynamics. FBIM provides the key ingredient for time integration of the overdamped Langevin equations for Brownian suspensions of rigid particles. We demonstrate that FBIM obeys DFDB by performing equilibrium BD simulations of suspensions of starfish-shaped bodies using a random finite difference temporal integrator.Comment: Submitted to J. Comp. Phy
    • …
    corecore