7,553 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Stabilizing Scheduling Policies for Networked Control Systems

    Full text link
    This paper deals with the problem of allocating communication resources for Networked Control Systems (NCSs). We consider an NCS consisting of a set of discrete-time LTI plants whose stabilizing feedback loops are closed through a shared communication channel. Due to a limited communication capacity of the channel, not all plants can exchange information with their controllers at any instant of time. We propose a method to find periodic scheduling policies under which global asymptotic stability of each plant in the NCS is preserved. The individual plants are represented as switched systems, and the NCS is expressed as a weighted directed graph. We construct stabilizing scheduling policies by employing cycles on the underlying weighted directed graph of the NCS that satisfy appropriate contractivity conditions. We also discuss algorithmic design of these cycles

    Optimal co-design of control, scheduling and routing in multi-hop control networks

    Full text link
    A Multi-hop Control Network consists of a plant where the communication between sensors, actuators and computational units is supported by a (wireless) multi-hop communication network, and data flow is performed using scheduling and routing of sensing and actuation data. Given a SISO LTI plant, we will address the problem of co-designing a digital controller and the network parameters (scheduling and routing) in order to guarantee stability and maximize a performance metric on the transient response to a step input, with constraints on the control effort, on the output overshoot and on the bandwidth of the communication channel. We show that the above optimization problem is a polynomial optimization problem, which is generally NP-hard. We provide sufficient conditions on the network topology, scheduling and routing such that it is computationally feasible, namely such that it reduces to a convex optimization problem.Comment: 51st IEEE Conference on Decision and Control, 2012. Accepted for publication as regular pape

    Multiple Loop Self-Triggered Model Predictive Control for Network Scheduling and Control

    Full text link
    We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instant not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.Comment: Accepted for publication in IEEE Transactions on Control Systems Technolog

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    • …
    corecore