28,815 research outputs found

    Some Problems in Automata Theory Which Depend on the Models of Set Theory

    Get PDF
    We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an omega-language L(A)L(A) accepted by a B\"uchi 1-counter automaton AA. We prove the following surprising result: there exists a 1-counter B\"uchi automaton AA such that the cardinality of the complement L(A)L(A)^- of the omega-language L(A)L(A) is not determined by ZFC: (1). There is a model V1V_1 of ZFC in which L(A)L(A)^- is countable. (2). There is a model V2V_2 of ZFC in which L(A)L(A)^- has cardinal 202^{\aleph_0}. (3). There is a model V3V_3 of ZFC in which L(A)L(A)^- has cardinal 1\aleph_1 with 0<1<20\aleph_0<\aleph_1<2^{\aleph_0}. We prove a very similar result for the complement of an infinitary rational relation accepted by a 2-tape B\"uchi automaton BB. As a corollary, this proves that the Continuum Hypothesis may be not satisfied for complements of 1-counter omega-languages and for complements of infinitary rational relations accepted by 2-tape B\"uchi automata. We infer from the proof of the above results that basic decision problems about 1-counter omega-languages or infinitary rational relations are actually located at the third level of the analytical hierarchy. In particular, the problem to determine whether the complement of a 1-counter omega-language (respectively, infinitary rational relation) is countable is in Σ31(Π21Σ21)\Sigma_3^1 \setminus (\Pi_2^1 \cup \Sigma_2^1). This is rather surprising if compared to the fact that it is decidable whether an infinitary rational relation is countable (respectively, uncountable).Comment: To appear in the journal RAIRO-Theoretical Informatics and Application

    Spin networks, quantum automata and link invariants

    Full text link
    The spin network simulator model represents a bridge between (generalized) circuit schemes for standard quantum computation and approaches based on notions from Topological Quantum Field Theories (TQFT). More precisely, when working with purely discrete unitary gates, the simulator is naturally modelled as families of quantum automata which in turn represent discrete versions of topological quantum computation models. Such a quantum combinatorial scheme, which essentially encodes SU(2) Racah--Wigner algebra and its braided counterpart, is particularly suitable to address problems in topology and group theory and we discuss here a finite states--quantum automaton able to accept the language of braid group in view of applications to the problem of estimating link polynomials in Chern--Simons field theory.Comment: LateX,19 pages; to appear in the Proc. of "Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Italy) September 12-16 200

    The Complexity of Infinite Computations In Models of Set Theory

    Get PDF
    We prove the following surprising result: there exist a 1-counter B\"uchi automaton and a 2-tape B\"uchi automaton such that the \omega-language of the first and the infinitary rational relation of the second in one model of ZFC are \pi_2^0-sets, while in a different model of ZFC both are analytic but non Borel sets. This shows that the topological complexity of an \omega-language accepted by a 1-counter B\"uchi automaton or of an infinitary rational relation accepted by a 2-tape B\"uchi automaton is not determined by the axiomatic system ZFC. We show that a similar result holds for the class of languages of infinite pictures which are recognized by B\"uchi tiling systems. We infer from the proof of the above results an improvement of the lower bound of some decision problems recently studied by the author

    On the state complexity of semi-quantum finite automata

    Full text link
    Some of the most interesting and important results concerning quantum finite automata are those showing that they can recognize certain languages with (much) less resources than corresponding classical finite automata \cite{Amb98,Amb09,AmYa11,Ber05,Fre09,Mer00,Mer01,Mer02,Yak10,ZhgQiu112,Zhg12}. This paper shows three results of such a type that are stronger in some sense than other ones because (a) they deal with models of quantum automata with very little quantumness (so-called semi-quantum one- and two-way automata with one qubit memory only); (b) differences, even comparing with probabilistic classical automata, are bigger than expected; (c) a trade-off between the number of classical and quantum basis states needed is demonstrated in one case and (d) languages (or the promise problem) used to show main results are very simple and often explored ones in automata theory or in communication complexity, with seemingly little structure that could be utilized.Comment: 19 pages. We improve (make stronger) the results in section

    State succinctness of two-way finite automata with quantum and classical states

    Full text link
    {\it Two-way quantum automata with quantum and classical states} (2QCFA) were introduced by Ambainis and Watrous in 2002. In this paper we study state succinctness of 2QCFA. For any mZ+m\in {\mathbb{Z}}^+ and any ϵ<1/2\epsilon<1/2, we show that: {enumerate} there is a promise problem Aeq(m)A^{eq}(m) which can be solved by a 2QCFA with one-sided error ϵ\epsilon in a polynomial expected running time with a constant number (that depends neither on mm nor on ε\varepsilon) of quantum states and O(log1ϵ)\mathbf{O}(\log{\frac{1}{\epsilon})} classical states, whereas the sizes of the corresponding {\it deterministic finite automata} (DFA), {\it two-way nondeterministic finite automata} (2NFA) and polynomial expected running time {\it two-way probabilistic finite automata} (2PFA) are at least 2m+22m+2, logm\sqrt{\log{m}}, and (logm)/b3\sqrt[3]{(\log m)/b}, respectively; there exists a language Ltwin(m)={wcww{a,b}}L^{twin}(m)=\{wcw| w\in\{a,b\}^*\} over the alphabet Σ={a,b,c}\Sigma=\{a,b,c\} which can be recognized by a 2QCFA with one-sided error ϵ\epsilon in an exponential expected running time with a constant number of quantum states and O(log1ϵ)\mathbf{O}(\log{\frac{1}{\epsilon})} classical states, whereas the sizes of the corresponding DFA, 2NFA and polynomial expected running time 2PFA are at least 2m2^m, m\sqrt{m}, and m/b3\sqrt[3]{m/b}, respectively; {enumerate} where bb is a constant.Comment: 26pages, comments and suggestions are welcom
    corecore