1,918 research outputs found

    A nonextensive entropy approach to solar wind intermittency

    Full text link
    The probability distributions (PDFs) of the differences of any physical variable in the intermittent, turbulent interplanetary medium are scale dependent. Strong non-Gaussianity of solar wind fluctuations applies for short time-lag spacecraft observations, corresponding to small-scale spatial separations, whereas for large scales the differences turn into a Gaussian normal distribution. These characteristics were hitherto described in the context of the log-normal, the Castaing distribution or the shell model. On the other hand, a possible explanation for nonlocality in turbulence is offered within the context of nonextensive entropy generalization by a recently introduced bi-kappa distribution, generating through a convolution of a negative-kappa core and positive-kappa halo pronounced non-Gaussian structures. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time lags and compared with the characteristics of the theoretical bi-kappa functional, well representing the overall scale dependence of the spatial solar wind intermittency. The observed PDF characteristics for increased spatial scales are manifest in the theoretical distribution functional by enhancing the only tuning parameter κ\kappa, measuring the degree of nonextensivity where the large-scale Gaussian is approached for κ→∞\kappa \to \infty. The nonextensive approach assures for experimental studies of solar wind intermittency independence from influence of a priori model assumptions. It is argued that the intermittency of the turbulent fluctuations should be related physically to the nonextensive character of the interplanetary medium counting for nonlocal interactions via the entropy generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.

    Intermittency of Superpositions of Ornstein-Uhlenbeck Type Processes

    Get PDF
    The phenomenon of intermittency has been widely discussed in physics literature. This paper provides a model of intermittency based on L\'evy driven Ornstein-Uhlenbeck (OU) type processes. Discrete superpositions of these processes can be constructed to incorporate non-Gaussian marginal distributions and long or short range dependence. While the partial sums of finite superpositions of OU type processes obey the central limit theorem, we show that the partial sums of a large class of infinite long range dependent superpositions are intermittent. We discuss the property of intermittency and behavior of the cumulants for the superpositions of OU type processes

    Non stationary multifractality in stock returns

    Full text link
    We perform an extensive empirical analysis of scaling properties of equity returns, suggesting that financial data show time varying multifractal properties. This is obtained by comparing empirical observations of the weighted generalised Hurst exponent (wGHE) with time series simulated via Multifractal Random Walk (MRW) by Bacry \textit{et al.} [\textit{E.Bacry, J.Delour and J.Muzy, Phys.Rev.E \,{\bf 64} 026103, 2001}]. While dynamical wGHE computed on synthetic MRW series is consistent with a scenario where multifractality is constant over time, fluctuations in the dynamical wGHE observed in empirical data are not in agreement with a MRW with constant intermittency parameter. We test these hypotheses of constant multifractality considering different specifications of MRW model with fatter tails: in all cases considered, although the thickness of the tails accounts for most of anomalous fluctuations of multifractality, still cannot fully explain the observed fluctuations.Comment: 27 pages, 10 figure

    Assessing Relative Volatility/Intermittency/Energy Dissipation

    Full text link
    We introduce the notion of relative volatility/intermittency and demonstrate how relative volatility statistics can be used to estimate consistently the temporal variation of volatility/intermittency when the data of interest are generated by a non-semimartingale, or a Brownian semistationary process in particular. This estimation method is motivated by the assessment of relative energy dissipation in empirical data of turbulence, but it is also applicable in other areas. We develop a probabilistic asymptotic theory for realised relative power variations of Brownian semistationary processes, and introduce inference methods based on the theory. We also discuss how to extend the asymptotic theory to other classes of processes exhibiting stochastic volatility/intermittency. As an empirical application, we study relative energy dissipation in data of atmospheric turbulence.Comment: 25 pages, 4 figures, v3: major revision, this version contains an application to electricity prices that was omitted from the published versio

    Analysis of chaotic motion and its shape dependence in a generalized piecewise linear map

    Full text link
    We analyse the chaotic motion and its shape dependence in a piecewise linear map using Fujisaka's characteristic function method. The map is a generalization of the one introduced by R. Artuso. Exact expressions for diffusion coefficient are obtained giving previously obtained results as special cases. Fluctuation spectrum relating to probability density function is obtained in a parametric form. We also give limiting forms of the above quantities. Dependence of diffusion coefficient and probability density function on the shape of the map is examined.Comment: 4 pages,4 figure

    About coherent structures in random shell models for passive scalar advection

    Full text link
    A study of anomalous scaling in models of passive scalar advection in terms of singular coherent structures is proposed. The stochastic dynamical system considered is a shell model reformulation of Kraichnan model. We extend the method introduced in \cite{DDG99} to the calculation of self-similar instantons and we show how such objects, being the most singular events, are appropriate to capture asymptotic scaling properties of the scalar field. Preliminary results concerning the statistical weight of fluctuations around these optimal configurations are also presented.Comment: 4 pages, 2 postscript figures, submitted to PR

    Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian distributed velocities

    Full text link
    The random intensity of noise approach to one-dimensional Laval-Dubrulle-Nazarenko type model having deductive support from the three-dimensional Navier-Stokes equation is used to describe Lagrangian acceleration statistics of a fluid particle in developed turbulent flows. Intensity of additive noise and cross correlation between multiplicative and additive noises entering a nonlinear Langevin equation are assumed to depend on random velocity fluctuations in an exponential way. We use exact analytic result for the acceleration probability density function obtained as a stationary solution of the associated Fokker-Planck equation. We give a complete quantitative description of the available experimental data on conditional and unconditional acceleration statistics within the framework of a single model with a single set of fit parameters. The acceleration distribution and variance conditioned on Lagrangian velocity fluctuations, and the marginal distribution calculated by using independent Gaussian velocity statistics are found to be in a good agreement with the recent high-Reynolds-number Lagrangian experimental data. The fitted conditional mean acceleration is very small, that is in agreement with DNS, and increases for higher velocities but it departs from the experimental data, which exhibit anisotropy of the studied flow.Comment: RevTeX4, twocolumn, 9 pages, 7 figures; revised version, to appear in Phys. Rev.
    • …
    corecore