7,701 research outputs found

    Analysis of the Gibbs sampler for hierarchical inverse problems

    Get PDF
    Many inverse problems arising in applications come from continuum models where the unknown parameter is a field. In practice the unknown field is discretized resulting in a problem in RN\mathbb{R}^N, with an understanding that refining the discretization, that is increasing NN, will often be desirable. In the context of Bayesian inversion this situation suggests the importance of two issues: (i) defining hyper-parameters in such a way that they are interpretable in the continuum limit NN \to \infty and so that their values may be compared between different discretization levels; (ii) understanding the efficiency of algorithms for probing the posterior distribution, as a function of large N.N. Here we address these two issues in the context of linear inverse problems subject to additive Gaussian noise within a hierarchical modelling framework based on a Gaussian prior for the unknown field and an inverse-gamma prior for a hyper-parameter, namely the amplitude of the prior variance. The structure of the model is such that the Gibbs sampler can be easily implemented for probing the posterior distribution. Subscribing to the dogma that one should think infinite-dimensionally before implementing in finite dimensions, we present function space intuition and provide rigorous theory showing that as NN increases, the component of the Gibbs sampler for sampling the amplitude of the prior variance becomes increasingly slower. We discuss a reparametrization of the prior variance that is robust with respect to the increase in dimension; we give numerical experiments which exhibit that our reparametrization prevents the slowing down. Our intuition on the behaviour of the prior hyper-parameter, with and without reparametrization, is sufficiently general to include a broad class of nonlinear inverse problems as well as other families of hyper-priors.Comment: to appear, SIAM/ASA Journal on Uncertainty Quantificatio

    Temporal breakdown and Borel resummation in the complex Langevin method

    Full text link
    We reexamine the Parisi-Klauder conjecture for complex e^{i\theta/2} \phi^4 measures with a Wick rotation angle 0 <= \theta/2 < \pi/2 interpolating between Euclidean and Lorentzian signature. Our main result is that the asymptotics for short stochastic times t encapsulates information also about the equilibrium aspects. The moments evaluated with the complex measure and with the real measure defined by the stochastic Langevin equation have the same t -> 0 asymptotic expansion which is shown to be Borel summable. The Borel transform correctly reproduces the time dependent moments of the complex measure for all t, including their t -> infinity equilibrium values. On the other hand the results of a direct numerical simulation of the Langevin moments are found to disagree from the `correct' result for t larger than a finite t_c. The breakdown time t_c increases powerlike for decreasing strength of the noise's imaginary part but cannot be excluded to be finite for purely real noise. To ascertain the discrepancy we also compute the real equilibrium distribution for complex noise explicitly and verify that its moments differ from those obtained with the complex measure.Comment: title changed, results on parameter dependence of t_c added, exposition improved. 39 pages, 7 figure

    Towards a unified lattice kinetic scheme for relativistic hydrodynamics

    Get PDF
    We present a systematic derivation of relativistic lattice kinetic equations for finite-mass particles, reaching close to the zero-mass ultra-relativistic regime treated in the previous literature. Starting from an expansion of the Maxwell-Juettner distribution on orthogonal polynomials, we perform a Gauss-type quadrature procedure and discretize the relativistic Boltzmann equation on space-filling Cartesian lattices. The model is validated through numerical comparison with standard benchmark tests and solvers in relativistic fluid dynamics such as Boltzmann approach multiparton scattering (BAMPS) and previous relativistic lattice Boltzmann models. This work provides a significant step towards the formulation of a unified relativistic lattice kinetic scheme, covering both massive and near-massless particles regimes

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data
    corecore