1,452 research outputs found

    On the Peak-to-Mean Envelope Power Ratio of Phase-Shifted Binary Codes

    Full text link
    The peak-to-mean envelope power ratio (PMEPR) of a code employed in orthogonal frequency-division multiplexing (OFDM) systems can be reduced by permuting its coordinates and by rotating each coordinate by a fixed phase shift. Motivated by some previous designs of phase shifts using suboptimal methods, the following question is considered in this paper. For a given binary code, how much PMEPR reduction can be achieved when the phase shifts are taken from a 2^h-ary phase-shift keying (2^h-PSK) constellation? A lower bound on the achievable PMEPR is established, which is related to the covering radius of the binary code. Generally speaking, the achievable region of the PMEPR shrinks as the covering radius of the binary code decreases. The bound is then applied to some well understood codes, including nonredundant BPSK signaling, BCH codes and their duals, Reed-Muller codes, and convolutional codes. It is demonstrated that most (presumably not optimal) phase-shift designs from the literature attain or approach our bound.Comment: minor revisions, accepted for IEEE Trans. Commun

    Deterministic Construction of Binary, Bipolar and Ternary Compressed Sensing Matrices

    Full text link
    In this paper we establish the connection between the Orthogonal Optical Codes (OOC) and binary compressed sensing matrices. We also introduce deterministic bipolar m×nm\times n RIP fulfilling ±1\pm 1 matrices of order kk such that mO(k(log2n)log2klnlog2k)m\leq\mathcal{O}\big(k (\log_2 n)^{\frac{\log_2 k}{\ln \log_2 k}}\big). The columns of these matrices are binary BCH code vectors where the zeros are replaced by -1. Since the RIP is established by means of coherence, the simple greedy algorithms such as Matching Pursuit are able to recover the sparse solution from the noiseless samples. Due to the cyclic property of the BCH codes, we show that the FFT algorithm can be employed in the reconstruction methods to considerably reduce the computational complexity. In addition, we combine the binary and bipolar matrices to form ternary sensing matrices ({0,1,1}\{0,1,-1\} elements) that satisfy the RIP condition.Comment: The paper is accepted for publication in IEEE Transaction on Information Theor

    A Method to determine Partial Weight Enumerator for Linear Block Codes

    Get PDF
    In this paper we present a fast and efficient method to find partial weight enumerator (PWE) for binary linear block codes by using the error impulse technique and Monte Carlo method. This PWE can be used to compute an upper bound of the error probability for the soft decision maximum likelihood decoder (MLD). As application of this method we give partial weight enumerators and analytical performances of the BCH(130,66), BCH(103,47) and BCH(111,55) shortened codes; the first code is obtained by shortening the binary primitive BCH (255,191,17) code and the two other codes are obtained by shortening the binary primitive BCH(127,71,19) code. The weight distributions of these three codes are unknown at our knowledge.Comment: Computer Engineering and Intelligent Systems Vol 3, No.11, 201

    On a Class of Optimal Nonbinary Linear Unequal-Error-Protection Codes for Two Sets of Messages

    Get PDF
    Several authors have addressed the problem of designing good linear unequal error protection (LUEP) codes. However, very little is known about good nonbinary LUEP codes. We present a class of optimal nonbinary LUEP codes for two different sets of messages. By combining t-error-correcting ReedSolomon (RS) codes and shortened nonbinary Hamming codes, we obtain nonbinary LUEP codes that protect one set of messages against any t or fewer symbol errors and the remaining set of messages against any single symbol error. For t ≥ 2, we show that these codes are optimal in the sense of achieving the Hamming lower bound on the number of redundant symbols of a nonbinary LUEP code with the same parameters

    Polar Codes with Dynamic Frozen Symbols and Their Decoding by Directed Search

    Full text link
    A novel construction of polar codes with dynamic frozen symbols is proposed. The proposed codes are subcodes of extended BCH codes, which ensure sufficiently high minimum distance. Furthermore, a decoding algorithm is proposed, which employs estimates of the not-yet-processed bit channel error probabilities to perform directed search in code tree, reducing thus the total number of iterations.Comment: Accepted to ITW201
    corecore