44 research outputs found

    Combinatorial generation via permutation languages

    Get PDF
    In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an nn-element set by adjacent transpositions; the binary reflected Gray code to generate all nn-bit strings by flipping a single bit in each step; the Gray code for generating all nn-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions of an nn-element ground set by element exchanges due to Kaye. We present two distinct applications for our new framework: The first main application is the generation of pattern-avoiding permutations, yielding new Gray codes for different families of permutations that are characterized by the avoidance of certain classical patterns, (bi)vincular patterns, barred patterns, Bruhat-restricted patterns, mesh patterns, monotone and geometric grid classes, and many others. We thus also obtain new Gray code algorithms for the combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into nn rectangles subject to certain restrictions. The second main application of our framework are lattice congruences of the weak order on the symmetric group~SnS_n. Recently, Pilaud and Santos realized all those lattice congruences as (n−1)(n-1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates the equivalence classes of each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian. We thus also obtain a provable notion of optimality for the Gray codes obtained from our framework: They translate into walks along the edges of a polytope

    Realizing the ss-permutahedron via flow polytopes

    Full text link
    Ceballos and Pons introduced the ss-weak order on ss-decreasing trees, for any weak composition ss. They proved that it has a lattice structure and further conjectured that it can be realized as the 11-skeleton of a polyhedral subdivision of a polytope. We answer their conjecture in the case where ss is a strict composition by providing three geometric realizations of the ss-permutahedron. The first one is the dual graph of a triangulation of a flow polytope of high dimension. The second one, obtained using the Cayley trick, is the dual graph of a fine mixed subdivision of a sum of hypercubes that has the conjectured dimension. The third one, obtained using tropical geometry, is the 11-skeleton of a polyhedral complex for which we can provide explicit coordinates of the vertices and whose support is a permutahedron as conjectured.Comment: 39 pages, 14 figure

    Trees, functional equations, and combinatorial Hopf algebras

    Full text link
    One of the main virtues of trees is to represent formal solutions of various functional equations which can be cast in the form of fixed point problems. Basic examples include differential equations and functional (Lagrange) inversion in power series rings. When analyzed in terms of combinatorial Hopf algebras, the simplest examples yield interesting algebraic identities or enumerative results.Comment: 14 pages, LaTE

    On pattern avoiding indecomposable permutations

    Get PDF
    Comtet introduced the notion of indecomposable permutations in 1972. A permutation is indecomposable if and only if it has no proper prefix which is itself a permutation. Indecomposable permutations were studied in the literature in various contexts. In particular, this notion has been proven to be useful in obtaining non-trivial enumeration and equidistribution results on permutations. In this paper, we give a complete classification of indecomposable permutations avoiding a classical pattern of length 3 or 4, and of indecomposable permutations avoiding a non-consecutive vincular pattern of length 3. Further, we provide a recursive formula for enumerating 12 ••• k-avoiding indecomposable permutations for k ≥ 3. Several of our results involve the descent statistic. We also provide a bijective proof of a fact relevant to our studies

    Permutrees

    Get PDF
    We introduce permutrees, a unified model for permutations, binary trees, Cambrian trees and binary sequences. On the combinatorial side, we study the rotation lattices on permutrees and their lattice homomorphisms, unifying the weak order, Tamari, Cambrian and boolean lattices and the classical maps between them. On the geometric side, we provide both the vertex and facet descriptions of a polytope realizing the rotation lattice, specializing to the permutahedron, the associahedra, and certain graphical zonotopes. On the algebraic side, we construct a Hopf algebra on permutrees containing the known Hopf algebraic structures on permutations, binary trees, Cambrian trees, and binary sequences.Comment: 43 pages, 25 figures; Version 2: minor correction

    Random induced subgraphs of Cayley graphs induced by transpositions

    Get PDF
    In this paper we study random induced subgraphs of Cayley graphs of the symmetric group induced by an arbitrary minimal generating set of transpositions. A random induced subgraph of this Cayley graph is obtained by selecting permutations with independent probability, λn\lambda_n. Our main result is that for any minimal generating set of transpositions, for probabilities λn=1+ϵnn−1\lambda_n=\frac{1+\epsilon_n}{n-1} where n−1/3+δ≤ϵn0n^{-{1/3}+\delta}\le \epsilon_n0, a random induced subgraph has a.s. a unique largest component of size ℘(ϵn)1+ϵnn−1n!\wp(\epsilon_n)\frac{1+\epsilon_n}{n-1}n!, where ℘(ϵn)\wp(\epsilon_n) is the survival probability of a specific branching process.Comment: 18 pages, 1 figur

    Lineup polytopes of product of simplices

    Full text link
    Consider a real point configuration A\mathbf{A} of size nn and an integer r≤nr \leq n. The vertices of the rr-lineup polytope of A\mathbf{A} correspond to the possible orderings of the top rr points of the configuration obtained by maximizing a linear functional. The motivation behind the study of lineup polytopes comes from the representability problem in quantum chemistry. In that context, the relevant point configurations are the vertices of hypersimplices and the integer points contained in an inflated regular simplex. The central problem consists in providing an inequality representation of lineup polytopes as efficiently as possible. In this article, we adapt the developed techniques to the quantum information theory setup. The appropriate point configurations become the vertices of products of simplices. A particular case is that of lineup polytopes of cubes, which form a type BB analog of hypersimplices, where the symmetric group of type~AA naturally acts. To obtain the inequalities, we center our attention on the combinatorics and the symmetry of products of simplices to obtain an algorithmic solution. Along the way, we establish relationships between lineup polytopes of products of simplices with the Gale order, standard Young tableaux, and the Resonance arrangement.Comment: 19 pages, 8 figure

    Brick polytopes, lattice quotients, and Hopf algebras

    Get PDF
    This paper is motivated by the interplay between the Tamari lattice, J.-L. Loday's realization of the associahedron, and J.-L. Loday and M. Ronco's Hopf algebra on binary trees. We show that these constructions extend in the world of acyclic kk-triangulations, which were already considered as the vertices of V. Pilaud and F. Santos' brick polytopes. We describe combinatorially a natural surjection from the permutations to the acyclic kk-triangulations. We show that the fibers of this surjection are the classes of the congruence ≡k\equiv^k on Sn\mathfrak{S}_n defined as the transitive closure of the rewriting rule UacV1b1⋯VkbkW≡kUcaV1b1⋯VkbkWU ac V_1 b_1 \cdots V_k b_k W \equiv^k U ca V_1 b_1 \cdots V_k b_k W for letters a<b1,…,bk<ca < b_1, \dots, b_k < c and words U,V1,…,Vk,WU, V_1, \dots, V_k, W on [n][n]. We then show that the increasing flip order on kk-triangulations is the lattice quotient of the weak order by this congruence. Moreover, we use this surjection to define a Hopf subalgebra of C. Malvenuto and C. Reutenauer's Hopf algebra on permutations, indexed by acyclic kk-triangulations, and to describe the product and coproduct in this algebra and its dual in term of combinatorial operations on acyclic kk-triangulations. Finally, we extend our results in three directions, describing a Cambrian, a tuple, and a Schr\"oder version of these constructions.Comment: 59 pages, 32 figure
    corecore