20,561 research outputs found

    Direct Feedback Alignment with Sparse Connections for Local Learning

    Get PDF
    Recent advances in deep neural networks (DNNs) owe their success to training algorithms that use backpropagation and gradient-descent. Backpropagation, while highly effective on von Neumann architectures, becomes inefficient when scaling to large networks. Commonly referred to as the weight transport problem, each neuron's dependence on the weights and errors located deeper in the network require exhaustive data movement which presents a key problem in enhancing the performance and energy-efficiency of machine-learning hardware. In this work, we propose a bio-plausible alternative to backpropagation drawing from advances in feedback alignment algorithms in which the error computation at a single synapse reduces to the product of three scalar values. Using a sparse feedback matrix, we show that a neuron needs only a fraction of the information previously used by the feedback alignment algorithms. Consequently, memory and compute can be partitioned and distributed whichever way produces the most efficient forward pass so long as a single error can be delivered to each neuron. Our results show orders of magnitude improvement in data movement and 2×2\times improvement in multiply-and-accumulate operations over backpropagation. Like previous work, we observe that any variant of feedback alignment suffers significant losses in classification accuracy on deep convolutional neural networks. By transferring trained convolutional layers and training the fully connected layers using direct feedback alignment, we demonstrate that direct feedback alignment can obtain results competitive with backpropagation. Furthermore, we observe that using an extremely sparse feedback matrix, rather than a dense one, results in a small accuracy drop while yielding hardware advantages. All the code and results are available under https://github.com/bcrafton/ssdfa.Comment: 15 pages, 8 figure

    Scalable and Sustainable Deep Learning via Randomized Hashing

    Full text link
    Current deep learning architectures are growing larger in order to learn from complex datasets. These architectures require giant matrix multiplication operations to train millions of parameters. Conversely, there is another growing trend to bring deep learning to low-power, embedded devices. The matrix operations, associated with both training and testing of deep networks, are very expensive from a computational and energy standpoint. We present a novel hashing based technique to drastically reduce the amount of computation needed to train and test deep networks. Our approach combines recent ideas from adaptive dropouts and randomized hashing for maximum inner product search to select the nodes with the highest activation efficiently. Our new algorithm for deep learning reduces the overall computational cost of forward and back-propagation by operating on significantly fewer (sparse) nodes. As a consequence, our algorithm uses only 5% of the total multiplications, while keeping on average within 1% of the accuracy of the original model. A unique property of the proposed hashing based back-propagation is that the updates are always sparse. Due to the sparse gradient updates, our algorithm is ideally suited for asynchronous and parallel training leading to near linear speedup with increasing number of cores. We demonstrate the scalability and sustainability (energy efficiency) of our proposed algorithm via rigorous experimental evaluations on several real datasets

    A Unified Coded Deep Neural Network Training Strategy Based on Generalized PolyDot Codes for Matrix Multiplication

    Full text link
    This paper has two contributions. First, we propose a novel coded matrix multiplication technique called Generalized PolyDot codes that advances on existing methods for coded matrix multiplication under storage and communication constraints. This technique uses "garbage alignment," i.e., aligning computations in coded computing that are not a part of the desired output. Generalized PolyDot codes bridge between Polynomial codes and MatDot codes, trading off between recovery threshold and communication costs. Second, we demonstrate that Generalized PolyDot can be used for training large Deep Neural Networks (DNNs) on unreliable nodes prone to soft-errors. This requires us to address three additional challenges: (i) prohibitively large overhead of coding the weight matrices in each layer of the DNN at each iteration; (ii) nonlinear operations during training, which are incompatible with linear coding; and (iii) not assuming presence of an error-free master node, requiring us to architect a fully decentralized implementation without any "single point of failure." We allow all primary DNN training steps, namely, matrix multiplication, nonlinear activation, Hadamard product, and update steps as well as the encoding/decoding to be error-prone. We consider the case of mini-batch size B=1B=1, as well as B>1B>1, leveraging coded matrix-vector products, and matrix-matrix products respectively. The problem of DNN training under soft-errors also motivates an interesting, probabilistic error model under which a real number (P,Q)(P,Q) MDS code is shown to correct P−Q−1P-Q-1 errors with probability 11 as compared to ⌊P−Q2⌋\lfloor \frac{P-Q}{2} \rfloor for the more conventional, adversarial error model. We also demonstrate that our proposed strategy can provide unbounded gains in error tolerance over a competing replication strategy and a preliminary MDS-code-based strategy for both these error models.Comment: Presented in part at the IEEE International Symposium on Information Theory 2018 (Submission Date: Jan 12 2018); Currently under review at the IEEE Transactions on Information Theor

    Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model

    Full text link
    The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems.Comment: 11 pages, 5 figures, v5 is the final version published on Scientific Reports journa
    • …
    corecore