21,464 research outputs found

    Deformations of quantum field theories on de Sitter spacetime

    Full text link
    Quantum field theories on de Sitter spacetime with global U(1) gauge symmetry are deformed using the joint action of the internal symmetry group and a one-parameter group of boosts. The resulting theory turns out to be wedge-local and non-isomorphic to the initial one for a class of theories, including the free charged Dirac field. The properties of deformed models coming from inclusions of CAR-algebras are studied in detail.Comment: 26 pages, no figure

    Causal posets, loops and the construction of nets of local algebras for QFT

    Full text link
    We provide a model independent construction of a net of C*-algebras satisfying the Haag-Kastler axioms over any spacetime manifold. Such a net, called the net of causal loops, is constructed by selecting a suitable base K encoding causal and symmetry properties of the spacetime. Considering K as a partially ordered set (poset) with respect to the inclusion order relation, we define groups of closed paths (loops) formed by the elements of K. These groups come equipped with a causal disjointness relation and an action of the symmetry group of the spacetime. In this way the local algebras of the net are the group C*-algebras of the groups of loops, quotiented by the causal disjointness relation. We also provide a geometric interpretation of a class of representations of this net in terms of causal and covariant connections of the poset K. In the case of the Minkowski spacetime, we prove the existence of Poincar\'e covariant representations satisfying the spectrum condition. This is obtained by virtue of a remarkable feature of our construction: any Hermitian scalar quantum field defines causal and covariant connections of K. Similar results hold for the chiral spacetime S1S^1 with conformal symmetry

    A new light on nets of C*-algebras and their representations

    Full text link
    The present paper deals with the question of representability of nets of C*-algebras whose underlying poset, indexing the net, is not upward directed. A particular class of nets, called C*-net bundles, is classified in terms of C*-dynamical systems having as group the fundamental group of the poset. Any net of C*-algebras embeds into a unique C*-net bundle, the enveloping net bundle, which generalizes the notion of universal C*-algebra given by Fredenhagen to nonsimply connected posets. This allows a classification of nets; in particular, we call injective those nets having a faithful embedding into the enveloping net bundle. Injectivity turns out to be equivalent to the existence of faithful representations. We further relate injectivity to a generalized Cech cocycle of the net, and this allows us to give examples of nets exhausting the above classification. Using the results of this paper we shall show, in a forthcoming paper, that any conformal net over S^1 is injective

    Transplantation of Local Nets and Geometric Modular Action on Robertson-Walker Space-Times

    Get PDF
    A novel method of transplanting algebras of observables from de Sitter space to a large class of Robertson-Walker space-times is exhibited. It allows one to establish the existence of an abundance of local nets on these spaces which comply with a recently proposed condition of geometric modular action. The corresponding modular symmetry groups appearing in these examples also satisfy a condition of modular stability, which has been suggested as a substitute for the requirement of positivity of the energy in Minkowski space. Moreover, they exemplify the conjecture that the modular symmetry groups are generically larger than the isometry and conformal groups of the underlying space-times.Comment: 20 pages, 1 figure, v2: minor changes in the wordin

    A Converse Hawking-Unruh Effect and dS^2/CFT Correspondance

    Get PDF
    Given a local quantum field theory net A on the de Sitter spacetime dS^d, where geodesic observers are thermalized at Gibbons-Hawking temperature, we look for observers that feel to be in a ground state, i.e. particle evolutions with positive generator, providing a sort of converse to the Hawking-Unruh effect. Such positive energy evolutions always exist as noncommutative flows, but have only a partial geometric meaning, yet they map localized observables into localized observables. We characterize the local conformal nets on dS^d. Only in this case our positive energy evolutions have a complete geometrical meaning. We show that each net has a unique maximal expected conformal subnet, where our evolutions are thus geometrical. In the two-dimensional case, we construct a holographic one-to-one correspondence between local nets A on dS^2 and local conformal non-isotonic families (pseudonets) B on S^1. The pseudonet B gives rise to two local conformal nets B(+/-) on S^1, that correspond to the H(+/-)-horizon components of A, and to the chiral components of the maximal conformal subnet of A. In particular, A is holographically reconstructed by a single horizon component, namely the pseudonet is a net, iff the translations on H(+/-) have positive energy and the translations on H(-/+) are trivial. This is the case iff the one-parameter unitary group implementing rotations on dS^2 has positive/negative generator.Comment: The title has changed. 38 pages, figures. To appear on Annales H. Poincare

    Algebraic constructive quantum field theory: Integrable models and deformation techniques

    Get PDF
    Several related operator-algebraic constructions for quantum field theory models on Minkowski spacetime are reviewed. The common theme of these constructions is that of a Borchers triple, capturing the structure of observables localized in a Rindler wedge. After reviewing the abstract setting, we discuss in this framework i) the construction of free field theories from standard pairs, ii) the inverse scattering construction of integrable QFT models on two-dimensional Minkowski space, and iii) the warped convolution deformation of QFT models in arbitrary dimension, inspired from non-commutative Minkowski space.Comment: Review article, 57 pages, 3 figure

    Scaling Algebras and Renormalization Group in Algebraic Quantum Field Theory

    Get PDF
    For any given algebra of local observables in Minkowski space an associated scaling algebra is constructed on which renormalization group (scaling) transformations act in a canonical manner. The method can be carried over to arbitrary spacetime manifolds and provides a framework for the systematic analysis of the short distance properties of local quantum field theories. It is shown that every theory has a (possibly non-unique) scaling limit which can be classified according to its classical or quantum nature. Dilation invariant theories are stable under the action of the renormalization group. Within this framework the problem of wedge (Bisognano-Wichmann) duality in the scaling limit is discussed and some of its physical implications are outlined.Comment: 47 pages, no figures, ams-late

    Geometric Modular Action and Spacetime Symmetry Groups

    Full text link
    A condition of geometric modular action is proposed as a selection principle for physically interesting states on general space-times. This condition is naturally associated with transformation groups of partially ordered sets and provides these groups with projective representations. Under suitable additional conditions, these groups induce groups of point transformations on these space-times, which may be interpreted as symmetry groups. The consequences of this condition are studied in detail in application to two concrete space-times -- four-dimensional Minkowski and three-dimensional de Sitter spaces -- for which it is shown how this condition characterizes the states invariant under the respective isometry group. An intriguing new algebraic characterization of vacuum states is given. In addition, the logical relations between the condition proposed in this paper and the condition of modular covariance, widely used in the literature, are completely illuminated.Comment: 83 pages, AMS-TEX (format changed to US letter size

    Representations of nets of C*-algebras over S^1

    Full text link
    In recent times a new kind of representations has been used to describe superselection sectors of the observable net over a curved spacetime, taking into account of the effects of the fundamental group of the spacetime. Using this notion of representation, we prove that any net of C*-algebras over S^1 admits faithful representations, and when the net is covariant under Diff(S^1), it admits representations covariant under any amenable subgroup of Diff(S^1)
    • …
    corecore