169,458 research outputs found

    S-Restricted Compositions Revisited

    Full text link
    An S-restricted composition of a positive integer n is an ordered partition of n where each summand is drawn from a given subset S of positive integers. There are various problems regarding such compositions which have received attention in recent years. This paper is an attempt at finding a closed- form formula for the number of S-restricted compositions of n. To do so, we reduce the problem to finding solutions to corresponding so-called interpreters which are linear homogeneous recurrence relations with constant coefficients. Then, we reduce interpreters to Diophantine equations. Such equations are not in general solvable. Thus, we restrict our attention to those S-restricted composition problems whose interpreters have a small number of coefficients, thereby leading to solvable Diophantine equations. The formalism developed is then used to study the integer sequences related to some well-known cases of the S-restricted composition problem

    On the Complexity of Quantum ACC

    Get PDF
    For any q>1q > 1, let \MOD_q be a quantum gate that determines if the number of 1's in the input is divisible by qq. We show that for any q,t>1q,t > 1, \MOD_q is equivalent to \MOD_t (up to constant depth). Based on the case q=2q=2, Moore \cite{moore99} has shown that quantum analogs of AC(0)^{(0)}, ACC[q][q], and ACC, denoted QACwf(0)^{(0)}_{wf}, QACC[2][2], QACC respectively, define the same class of operators, leaving q>2q > 2 as an open question. Our result resolves this question, proving that QACwf(0)=^{(0)}_{wf} = QACC[q]=[q] = QACC for all qq. We also develop techniques for proving upper bounds for QACC in terms of related language classes. We define classes of languages EQACC, NQACC and BQACC_{\rats}. We define a notion log\log-planar QACC operators and show the appropriately restricted versions of EQACC and NQACC are contained in P/poly. We also define a notion of log\log-gate restricted QACC operators and show the appropriately restricted versions of EQACC and NQACC are contained in TC(0)^{(0)}. To do this last proof, we show that TC(0)^{(0)} can perform iterated addition and multiplication in certain field extensions. We also introduce the notion of a polynomial-size tensor graph and show that families of such graphs can encode the amplitudes resulting from apply an arbitrary QACC operator to an initial state.Comment: 22 pages, 4 figures This version will appear in the July 2000 Computational Complexity conference. Section 4 has been significantly revised and many typos correcte
    corecore