11 research outputs found

    Some constructions of quantum MDS codes

    Get PDF
    We construct quantum MDS codes with parameters [ ⁣[q2+1,q2+32d,d] ⁣]q [\![ q^2+1,q^2+3-2d,d ]\!] _q for all dq+1d \leqslant q+1, dqd \neq q. These codes are shown to exist by proving that there are classical generalised Reed-Solomon codes which contain their Hermitian dual. These constructions include many constructions which were previously known but in some cases these codes are new. We go on to prove that if dq+2d\geqslant q+2 then there is no generalised Reed-Solomon [n,nd+1,d]q2[n,n-d+1,d]_{q^2} code which contains its Hermitian dual. We also construct an [ ⁣[18,0,10] ⁣]5 [\![ 18,0,10 ]\!] _5 quantum MDS code, an [ ⁣[18,0,10] ⁣]7 [\![ 18,0,10 ]\!] _7 quantum MDS code and a [ ⁣[14,0,8] ⁣]5 [\![ 14,0,8 ]\!] _5 quantum MDS code, which are the first quantum MDS codes discovered for which dq+3d \geqslant q+3, apart from the [ ⁣[10,0,6] ⁣]3 [\![ 10,0,6 ]\!] _3 quantum MDS code derived from Glynn's code

    Some constructions of quantum MDS codes

    Get PDF
    ​The version of record os available online at: http://dx.doi.org/10.1007/s10623-021-00846-yWe construct quantum MDS codes with parameters [[q2+1,q2+3-2d,d]]q for all d¿q+1, d¿q. These codes are shown to exist by proving that there are classical generalised Reed–Solomon codes which contain their Hermitian dual. These constructions include many constructions which were previously known but in some cases these codes are new. We go on to prove that if d¿q+2 then there is no generalised Reed–Solomon [n,n-d+1,d]q2 code which contains its Hermitian dual. We also construct an [[18,0,10]]5 quantum MDS code, an [[18,0,10]]7 quantum MDS code and a [[14,0,8]]5 quantum MDS code, which are the first quantum MDS codes discovered for which d¿q+3, apart from the [[10,0,6]]3 quantum MDS code derived from Glynn’s code.Postprint (author's final draft

    New Quantum MDS codes from Hermitian self-orthogonal generalized Reed-Solomon codes

    Full text link
    Quantum maximum-distance-separable (MDS for short) codes are an important class of quantum codes. In this paper, by using Hermitian self-orthogonal generalized Reed-Solomon (GRS for short) codes, we construct four new classes of qq-ary quantum MDS codes. The qq-ary quantum MDS codes we construct have larger minimum distances. And the minimum distance of these codes is greater than q/2+1q/2+1. Furthermore, it turns out that our quantum MDS codes generalize the previous conclusions.Comment: 19 pages, 2 table

    Determining when a truncated generalised Reed-Solomon code is Hermitian self-orthogonal

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksWe prove that there is a Hermitian self-orthogonal k -dimensional truncated generalised Reed-Solomon code of length n¿q2 over Fq2 if and only if there is a polynomial g¿Fq2 of degree at most (q-k)q-1 such that g+gq has q2-n distinct zeros. This allows us to determine the smallest n for which there is a Hermitian self-orthogonal k -dimensional truncated generalised Reed-Solomon code of length n over Fq2 , verifying a conjecture of Grassl and Rötteler. We also provide examples of Hermitian self-orthogonal k -dimensional generalised Reed-Solomon codes of length q2+1 over Fq2 , for k=q-1 and q an odd power of two.Peer ReviewedPostprint (author's final draft

    Determining hulls of generalized Reed-Solomon codes from algebraic geometry codes

    Full text link
    In this paper, we provide conditions that hulls of generalized Reed-Solomon (GRS) codes are also GRS codes from algebraic geometry codes. If the conditions are not satisfied, we provide a method of linear algebra to find the bases of hulls of GRS codes and give formulas to compute their dimensions. Besides, we explain that the conditions are too good to be improved by some examples. Moreover, we show self-orthogonal and self-dual GRS codes
    corecore