83,776 research outputs found

    Quid Pro Quo: A Mechanism for Fair Collaboration in Networked Systems

    Get PDF
    Collaboration may be understood as the execution of coordinated tasks (in the most general sense) by groups of users, who cooperate for achieving a common goal. Collaboration is a fundamental assumption and requirement for the correct operation of many communication systems. The main challenge when creating collaborative systems in a decentralized manner is dealing with the fact that users may behave in selfish ways, trying to obtain the benefits of the tasks but without participating in their execution. In this context, Game Theory has been instrumental to model collaborative systems and the task allocation problem, and to design mechanisms for optimal allocation of tasks. In this paper, we revise the classical assumptions and propose a new approach to this problem. First, we establish a system model based on heterogenous nodes (users, players), and propose a basic distributed mechanism so that, when a new task appears, it is assigned to the most suitable node. The classical technique for compensating a node that executes a task is the use of payments (which in most networks are hard or impossible to implement). Instead, we propose a distributed mechanism for the optimal allocation of tasks without payments. We prove this mechanism to be robust event in the presence of independent selfish or rationally limited players. Additionally, our model is based on very weak assumptions, which makes the proposed mechanisms susceptible to be implemented in networked systems (e.g., the Internet).Comment: 23 pages, 5 figures, 3 algorithm

    Markets with bilateral bargaining and incomplete information

    Get PDF
    We study the relationship between bargaining and competition with incomplete information. We consider a model with two uninformed and identical buyers and two sellers. One of the sellers has a privately-known reservation price, which can either be Low or High. The other seller’s reservation price is commonly known to be in between the Low and High values of the privately-informed seller. Buyers move in sequence, and make offers with the second buyer observing the offer made by the first buyer. The sellers respond simultaneously. We show that there are two types of (perfect Bayes) equilibrium. In one equilibrium, the buyer who moves second does better. In the second equilibrium, buyers’ expected payoffs are equalised, and the price received by the seller with the known reservation value is determined entirely by the equuilibrium of the two-player game between a single buyer and an informed seller. We also discuss extensions of the model to multiple buyers and sellers, and to the case where both sellers are privately informed

    Signaling equilibria for dynamic LQG games with asymmetric information

    Full text link
    We consider a finite horizon dynamic game with two players who observe their types privately and take actions, which are publicly observed. Players' types evolve as independent, controlled linear Gaussian processes and players incur quadratic instantaneous costs. This forms a dynamic linear quadratic Gaussian (LQG) game with asymmetric information. We show that under certain conditions, players' strategies that are linear in their private types, together with Gaussian beliefs form a perfect Bayesian equilibrium (PBE) of the game. Furthermore, it is shown that this is a signaling equilibrium due to the fact that future beliefs on players' types are affected by the equilibrium strategies. We provide a backward-forward algorithm to find the PBE. Each step of the backward algorithm reduces to solving an algebraic matrix equation for every possible realization of the state estimate covariance matrix. The forward algorithm consists of Kalman filter recursions, where state estimate covariance matrices depend on equilibrium strategies
    • 

    corecore