3 research outputs found

    An Erd{\H o}s-Ko-Rado theorem for permutations with fixed number of cycles

    Full text link
    Let SnS_{n} denote the set of permutations of [n]={1,2,…,n}[n]=\{1,2,\dots, n\}. For a positive integer kk, define Sn,kS_{n,k} to be the set of all permutations of [n][n] with exactly kk disjoint cycles, i.e., Sn,k={Ο€βˆˆSn:Ο€=c1c2β‹―ck}, S_{n,k} = \{\pi \in S_{n}: \pi = c_{1}c_{2} \cdots c_{k}\}, where c1,c2,…,ckc_1,c_2,\dots ,c_k are disjoint cycles. The size of Sn,kS_{n,k} is given by [nk]=(βˆ’1)nβˆ’ks(n,k)\left [ \begin{matrix}n\\ k \end{matrix}\right]=(-1)^{n-k}s(n,k), where s(n,k)s(n,k) is the Stirling number of the first kind. A family AβŠ†Sn,k\mathcal{A} \subseteq S_{n,k} is said to be tt-{\em intersecting} if any two elements of A\mathcal{A} have at least tt common cycles. In this paper, we show that, given any positive integers k,tk,t with kβ‰₯t+1k\geq t+1, there exists an integer n0=n0(k,t)n_0=n_0(k,t), such that for all nβ‰₯n0n\geq n_0, if AβŠ†Sn,k\mathcal{A} \subseteq S_{n,k} is tt-intersecting, then ∣Aβˆ£β‰€[nβˆ’tkβˆ’t], |\mathcal{A}| \le \left [ \begin{matrix}n-t\\ k-t \end{matrix}\right], with equality if and only if A\mathcal{A} is the stabiliser of tt fixed points.Comment: 8 page

    An Analogue of the Hilton-Milner Theorem for weak compositions

    Full text link
    Let N0\mathbb N_0 be the set of non-negative integers, and let P(n,l)P(n,l) denote the set of all weak compositions of nn with ll parts, i.e., P(n,l)={(x1,x2,…,xl)∈N0lΒ :Β x1+x2+β‹―+xl=n}P(n,l)=\{ (x_1,x_2,\dots, x_l)\in\mathbb N_0^l\ :\ x_1+x_2+\cdots+x_l=n\}. For any element u=(u1,u2,…,ul)∈P(n,l)\mathbf u=(u_1,u_2,\dots, u_l)\in P(n,l), denote its iith-coordinate by u(i)\mathbf u(i), i.e., u(i)=ui\mathbf u(i)=u_i. A family AβŠ†P(n,l)\mathcal A\subseteq P(n,l) is said to be tt-intersecting if ∣{iΒ :Β u(i)=v(i)}∣β‰₯t\vert \{ i \ :\ \mathbf u(i)=\mathbf v(i)\} \vert\geq t for all u,v∈A\mathbf u,\mathbf v\in \mathcal A. A family AβŠ†P(n,l)\mathcal A\subseteq P(n,l) is said to be trivially tt-intersecting if there is a tt-set TT of {1,2,…,l}\{1,2,\dots,l\} and elements ys∈N0y_s\in \mathbb N_0 (s∈Ts\in T) such that A={u∈P(n,l)Β :Β u(j)=yjΒ forallΒ j∈T}\mathcal{A}= \{\mathbf u\in P(n,l)\ :\ \mathbf u(j)=y_j\ {\rm for all}\ j\in T\}. We prove that given any positive integers l,tl,t with lβ‰₯2t+3l\geq 2t+3, there exists a constant n0(l,t)n_0(l,t) depending only on ll and tt, such that for all nβ‰₯n0(l,t)n\geq n_0(l,t), if AβŠ†P(n,l)\mathcal{A} \subseteq P(n,l) is non-trivially tt-intersecting then \begin{equation} \vert \mathcal{A} \vert\leq {n+l-t-1 \choose l-t-1}-{n-1 \choose l-t-1}+t.\notag \end{equation} Moreover, equality holds if and only if there is a tt-set TT of {1,2,…,l}\{1,2,\dots,l\} such that \begin{equation} \mathcal A=\bigcup_{s\in \{1,2,\dots, l\}\setminus T} \mathcal A_s\cup \left\{ \mathbf q_i\ :\ i\in T \right\},\notag \end{equation} where \begin{align} \mathcal{A}_s & =\{\mathbf u\in P(n,l)\ :\ \mathbf u(j)=0\ {\rm for all}\ j\in T\ {\rm and}\ \mathbf u(s)=0\}\notag \end{align} and qi∈P(n,l)\mathbf q_i\in P(n,l) with qi(j)=0\mathbf q_i(j)=0 for all j∈{1,2,…,l}βˆ–{i}j\in \{1,2,\dots, l\}\setminus \{i\} and qi(i)=n\mathbf q_i(i)=n.Comment: 19 page
    corecore