2 research outputs found

    Type-two Iteration with Bounded Query Revision

    Full text link
    Motivated by recent results of Kapron and Steinberg (LICS 2018) we introduce new forms of iteration on length in the setting of applied lambda-calculi for higher-type poly-time computability. In particular, in a type-two setting, we consider functionals which capture iteration on input length which bound interaction with the type-one input parameter, by restricting to a constant either the number of times the function parameter may return a value of increasing size, or the number of times the function parameter may be applied to an argument of increasing size. We prove that for any constant bound, the iterators obtained are equivalent, with respect to lambda-definability over type-one poly-time functions, to the recursor of Cook and Urquhart which captures Cobham's notion of limited recursion on notation in this setting.Comment: In Proceedings DICE-FOPARA 2019, arXiv:1908.0447

    Type-two polynomial-time and restricted lookahead

    Full text link
    This paper provides an alternate characterization of type-two polynomial-time computability, with the goal of making second-order complexity theory more approachable. We rely on the usual oracle machines to model programs with subroutine calls. In contrast to previous results, the use of higher-order objects as running times is avoided, either explicitly or implicitly. Instead, regular polynomials are used. This is achieved by refining the notion of oracle-polynomial-time introduced by Cook. We impose a further restriction on the oracle interactions to force feasibility. Both the restriction as well as its purpose are very simple: it is well-known that Cook's model allows polynomial depth iteration of functional inputs with no restrictions on size, and thus does not guarantee that polynomial-time computability is preserved. To mend this we restrict the number of lookahead revisions, that is the number of times a query can be asked that is bigger than any of the previous queries. We prove that this leads to a class of feasible functionals and that all feasible problems can be solved within this class if one is allowed to separate a task into efficiently solvable subtasks. Formally put: the closure of our class under lambda-abstraction and application includes all feasible operations. We also revisit the very similar class of strongly polynomial-time computable operators previously introduced by Kawamura and Steinberg. We prove it to be strictly included in our class and, somewhat surprisingly, to have the same closure property. This can be attributed to properties of the limited recursion operator: It is not strongly polynomial-time computable but decomposes into two such operations and lies in our class
    corecore