41,890 research outputs found

    Computing large market equilibria using abstractions

    Full text link
    Computing market equilibria is an important practical problem for market design (e.g. fair division, item allocation). However, computing equilibria requires large amounts of information (e.g. all valuations for all buyers for all items) and compute power. We consider ameliorating these issues by applying a method used for solving complex games: constructing a coarsened abstraction of a given market, solving for the equilibrium in the abstraction, and lifting the prices and allocations back to the original market. We show how to bound important quantities such as regret, envy, Nash social welfare, Pareto optimality, and maximin share when the abstracted prices and allocations are used in place of the real equilibrium. We then study two abstraction methods of interest for practitioners: 1) filling in unknown valuations using techniques from matrix completion, 2) reducing the problem size by aggregating groups of buyers/items into smaller numbers of representative buyers/items and solving for equilibrium in this coarsened market. We find that in real data allocations/prices that are relatively close to equilibria can be computed from even very coarse abstractions

    Consensus-based approach to peer-to-peer electricity markets with product differentiation

    Full text link
    With the sustained deployment of distributed generation capacities and the more proactive role of consumers, power systems and their operation are drifting away from a conventional top-down hierarchical structure. Electricity market structures, however, have not yet embraced that evolution. Respecting the high-dimensional, distributed and dynamic nature of modern power systems would translate to designing peer-to-peer markets or, at least, to using such an underlying decentralized structure to enable a bottom-up approach to future electricity markets. A peer-to-peer market structure based on a Multi-Bilateral Economic Dispatch (MBED) formulation is introduced, allowing for multi-bilateral trading with product differentiation, for instance based on consumer preferences. A Relaxed Consensus+Innovation (RCI) approach is described to solve the MBED in fully decentralized manner. A set of realistic case studies and their analysis allow us showing that such peer-to-peer market structures can effectively yield market outcomes that are different from centralized market structures and optimal in terms of respecting consumers preferences while maximizing social welfare. Additionally, the RCI solving approach allows for a fully decentralized market clearing which converges with a negligible optimality gap, with a limited amount of information being shared.Comment: Accepted for publication in IEEE Transactions on Power System

    A New Approach to Electricity Market Clearing With Uniform Purchase Price and Curtailable Block Orders

    Full text link
    The European market clearing problem is characterized by a set of heterogeneous orders and rules that force the implementation of heuristic and iterative solving methods. In particular, curtailable block orders and the uniform purchase price (UPP) pose serious difficulties. A block is an order that spans over multiple hours, and can be either fully accepted or fully rejected. The UPP prescribes that all consumers pay a common price, i.e., the UPP, in all the zones, while producers receive zonal prices, which can differ from one zone to another. The market clearing problem in the presence of both the UPP and block orders is a major open issue in the European context. The UPP scheme leads to a non-linear optimization problem involving both primal and dual variables, whereas block orders introduce multi-temporal constraints and binary variables into the problem. As a consequence, the market clearing problem in the presence of both blocks and the UPP can be regarded as a non-linear integer programming problem involving both primal and dual variables with complementary and multi-temporal constraints. The aim of this paper is to present a non-iterative and heuristic-free approach for solving the market clearing problem in the presence of both curtailable block orders and the UPP. The solution is exact, with no approximation up to the level of resolution of current market data. By resorting to an equivalent UPP formulation, the proposed approach results in a mixed-integer linear program, which is built starting from a non-linear integer bilevel programming problem. Numerical results using real market data are reported to show the effectiveness of the proposed approach. The model has been implemented in Python, and the code is freely available on a public repository.Comment: 15 pages, 7 figure
    • …
    corecore