688 research outputs found

    An Accelerated DC Programming Approach with Exact Line Search for The Symmetric Eigenvalue Complementarity Problem

    Full text link
    In this paper, we are interested in developing an accelerated Difference-of-Convex (DC) programming algorithm based on the exact line search for efficiently solving the Symmetric Eigenvalue Complementarity Problem (SEiCP) and Symmetric Quadratic Eigenvalue Complementarity Problem (SQEiCP). We first proved that any SEiCP is equivalent to SEiCP with symmetric positive definite matrices only. Then, we established DC programming formulations for two equivalent formulations of SEiCP (namely, the logarithmic formulation and the quadratic formulation), and proposed the accelerated DC algorithm (BDCA) by combining the classical DCA with inexpensive exact line search by finding real roots of a binomial for acceleration. We demonstrated the equivalence between SQEiCP and SEiCP, and extended BDCA to SQEiCP. Numerical simulations of the proposed BDCA and DCA against KNITRO, FILTERED and MATLAB FMINCON for SEiCP and SQEiCP on both synthetic datasets and Matrix Market NEP Repository are reported. BDCA demonstrated dramatic acceleration to the convergence of DCA to get better numerical solutions, and outperformed KNITRO, FILTERED, and FMINCON solvers in terms of the average CPU time and average solution precision, especially for large-scale cases.Comment: 24 page

    Sequential Convex Programming Methods for Solving Nonlinear Optimization Problems with DC constraints

    Full text link
    This paper investigates the relation between sequential convex programming (SCP) as, e.g., defined in [24] and DC (difference of two convex functions) programming. We first present an SCP algorithm for solving nonlinear optimization problems with DC constraints and prove its convergence. Then we combine the proposed algorithm with a relaxation technique to handle inconsistent linearizations. Numerical tests are performed to investigate the behaviour of the class of algorithms.Comment: 18 pages, 1 figur

    On Difference-of-SOS and Difference-of-Convex-SOS Decompositions for Polynomials

    Full text link
    In this paper, we are interested in developing polynomial decomposition techniques to reformulate real valued multivariate polynomials into difference-of-sums-of-squares (namely, D-SOS) and difference-of-convex-sums-of-squares (namely, DC-SOS). Firstly, we prove that the set of D-SOS and DC-SOS polynomials are vector spaces and equivalent to the set of real valued polynomials. Moreover, the problem of finding D-SOS and DC-SOS decompositions are equivalent to semidefinite programs (SDP) which can be solved to any desired precision in polynomial time. Some important algebraic properties and the relationships among the set of sums-of-squares (SOS) polynomials, positive semidefinite (PSD) polynomials, convex-sums-of-squares (CSOS) polynomials, SOS-convex polynomials, D-SOS and DC-SOS polynomials are discussed. Secondly, we focus on establishing several practical algorithms for constructing D-SOS and DC-SOS decompositions for any polynomial without solving SDP. Using DC-SOS decomposition, we can reformulate polynomial optimization problems in the realm of difference-of-convex (DC) programming, which can be handled by efficient DC programming approaches. Some examples illustrate how to use our methods for constructing D-SOS and DC-SOS decompositions. Numerical performance of D-SOS and DC-SOS decomposition algorithms and their parallelized methods are tested on a synthetic dataset with 1750 randomly generated large and small sized sparse and dense polynomials. Some real-world applications in higher order moment portfolio optimization problems, eigenvalue complementarity problems, Euclidean distance matrix completion problems, and Boolean polynomial programs are also presented.Comment: 47 pages, 19 figure

    Revisit of Spectral Bundle Methods: Primal-dual (Sub)linear Convergence Rates

    Full text link
    The spectral bundle method proposed by Helmberg and Rendl is well established for solving large-scale semidefinite programs (SDP) thanks to its low per iteration computational complexity and strong practical performance. In this paper, we revisit this classic method show-ing it achieves sublinear convergence rates in terms of both primal and dual SDPs under merely strong duality, complementing previous guarantees on primal-dual convergence. Moreover, we show the method speeds up to linear convergence if (1) structurally, the SDP admits strict complementarity, and (2) algorithmically, the bundle method captures the rank of the optimal solutions. Such complementary and low rank structure is prevalent in many modern and classical applications. The linear convergent result is established via an eigenvalue approximation lemma which might be of independent interests. Numerically, we confirm our theoretical findings that the spectral bundle method, for modern and classical applications, indeed speeds up under aforementioned conditionComment: 30 pages and 2 figure

    A Boosted-DCA with Power-Sum-DC Decomposition for Linearly Constrained Polynomial Programs

    Full text link
    This paper proposes a novel Difference-of-Convex (DC) decomposition for polynomials using a power-sum representation, achieved by solving a sparse linear system. We introduce the Boosted DCA with Exact Line Search (BDCAe) for addressing linearly constrained polynomial programs within the DC framework. Notably, we demonstrate that the exact line search equates to determining the roots of a univariate polynomial in an interval, with coefficients being computed explicitly based on the power-sum DC decompositions. The subsequential convergence of BDCAe to critical points is proven, and its convergence rate under the Kurdyka-Lojasiewicz property is established. To efficiently tackle the convex subproblems, we integrate the Fast Dual Proximal Gradient (FDPG) method by exploiting the separable block structure of the power-sum DC decompositions. We validate our approach through numerical experiments on the Mean-Variance-Skewness-Kurtosis (MVSK) portfolio optimization model and box-constrained polynomial optimization problems. Comparative analysis of BDCAe against DCA, BDCA with Armijo line search, UDCA, and UBDCA with projective DC decomposition, alongside standard nonlinear optimization solvers FMINCON and FILTERSD, substantiates the efficiency of our proposed approach.Comment: 39 pages, 5 figure

    A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints

    Get PDF
    We propose a new algorithm to solve optimization problems of the form minf(X)\min f(X) for a smooth function ff under the constraints that XX is positive semidefinite and the diagonal blocks of XX are small identity matrices. Such problems often arise as the result of relaxing a rank constraint (lifting). In particular, many estimation tasks involving phases, rotations, orthonormal bases or permutations fit in this framework, and so do certain relaxations of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions are smooth optimization problems on a Riemannian manifold. Combining insights from both the Riemannian and the convex geometries of the problem, we characterize when second-order critical points of the smooth problem reveal KKT points of the semidefinite problem. We compare against state of the art, mature software and find that, on certain interesting problem instances, what we call the staircase method is orders of magnitude faster, is more accurate and scales better. Code is available.Comment: 37 pages, 3 figure
    corecore