2,074 research outputs found

    Experimental study on population-based incremental learning algorithms for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2005.Evolutionary algorithms have been widely used for stationary optimization problems. However, the environments of real world problems are often dynamic. This seriously challenges traditional evolutionary algorithms. In this paper, the application of population-based incremental learning (PBIL) algorithms, a class of evolutionary algorithms, for dynamic problems is investigated. Inspired by the complementarity mechanism in nature a Dual PBIL is proposed, which operates on two probability vectors that are dual to each other with respect to the central point in the genotype space. A diversity maintaining technique of combining the central probability vector into PBIL is also proposed to improve PBILs adaptability in dynamic environments. In this paper, a new dynamic problem generator that can create required dynamics from any binary-encoded stationary problem is also formalized. Using this generator, a series of dynamic problems were systematically constructed from several benchmark stationary problems and an experimental study was carried out to compare the performance of several PBIL algorithms and two variants of standard genetic algorithm. Based on the experimental results, we carried out algorithm performance analysis regarding the weakness and strength of studied PBIL algorithms and identified several potential improvements to PBIL for dynamic optimization problems.This work was was supported by UK EPSRC under Grant GR/S79718/01

    Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints

    Full text link
    We investigate two new optimization problems -- minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of real-world applications in machine learning including sensor placement and data subset selection, which require maximizing a certain submodular function (like coverage or diversity) while simultaneously minimizing another (like cooperative cost). These problems are often posed as minimizing the difference between submodular functions [14, 35] which is in the worst case inapproximable. We show, however, that by phrasing these problems as constrained optimization, which is more natural for many applications, we achieve a number of bounded approximation guarantees. We also show that both these problems are closely related and an approximation algorithm solving one can be used to obtain an approximation guarantee for the other. We provide hardness results for both problems thus showing that our approximation factors are tight up to log-factors. Finally, we empirically demonstrate the performance and good scalability properties of our algorithms.Comment: 23 pages. A short version of this appeared in Advances of NIPS-201

    Optimal advert placement slot – using the knapsack problem model

    Get PDF
    The Knapsack problem model is a general resource allocation model in which a single resource is assigned to a number of alternatives with the objective of maximizing the total return. In this work, we applied the knapsack problem model to the placement of advert slots in the media. The aim was to optimize the capital allocated for advert placements. The general practice is that funds are allocated by trial and error and at the discretions of persons. This approach most times do not yield maximum results, lesser audience are reached. But when the scientific Knapsack problem model was applied to industry data, a better result was achieved, wider audience and minimal cost was attained

    A case for adaptive sub-carrier level power allocation in OFDMA networks

    Get PDF
    In today's OFDMA networks, the transmission power is typically fixed and the same for all the sub-carriers that compose a channel. The sub-carriers though, experience different degrees of fading and thus, the received power is different for different sub-carriers; while some frequencies experience deep fades, others are relatively unaffected. In this paper, we make a case of redistributing the power across the sub-carriers (subject to a fixed power budget constraint) to better cope with this frequency selectivity. Specifically, we design a joint power and rate adaptation scheme (called JPRA for short) wherein power redistribution is combined with sub-carrier level rate adaptation to yield significant throughput benefits. We further consider two variants of JPRA: (a) JPRA-CR where, the power is redistributed across sub-carriers so as to support a maximum common rate (CR) across sub-carriers and (b) JPRA-MT where, the goal is to redistribute power such that the transmission time of a packet is minimized. While the first variant decreases transceiver complexity and is simpler, the second is geared towards achieving the maximum throughput possible. We implement both variants of JPRA on our WARP radio testbed. Our extensive experiments demonstrate that our scheme provides a 35% improvement in total network throughput in testbed experiments compared to FARA, a scheme where only sub-carrier level rate adaptation is used. We also perform simulations to demonstrate the efficacy of JPRA in larger scale networks. © 2012 ACM

    Adaptive primal-dual genetic algorithms in dynamic environments

    Get PDF
    This article is placed here with permission of IEEE - Copyright @ 2010 IEEERecently, there has been an increasing interest in applying genetic algorithms (GAs) in dynamic environments. Inspired by the complementary and dominance mechanisms in nature, a primal-dual GA (PDGA) has been proposed for dynamic optimization problems (DOPs). In this paper, an important operator in PDGA, i.e., the primal-dual mapping (PDM) scheme, is further investigated to improve the robustness and adaptability of PDGA in dynamic environments. In the improved scheme, two different probability-based PDM operators, where the mapping probability of each allele in the chromosome string is calculated through the statistical information of the distribution of alleles in the corresponding gene locus over the population, are effectively combined according to an adaptive Lamarckian learning mechanism. In addition, an adaptive dominant replacement scheme, which can probabilistically accept inferior chromosomes, is also introduced into the proposed algorithm to enhance the diversity level of the population. Experimental results on a series of dynamic problems generated from several stationary benchmark problems show that the proposed algorithm is a good optimizer for DOPs.This work was supported in part by the National Nature Science Foundation of China (NSFC) under Grant 70431003 and Grant 70671020, by the National Innovation Research Community Science Foundation of China under Grant 60521003, by the National Support Plan of China under Grant 2006BAH02A09, by the Engineering and Physical Sciences Research Council (EPSRC) of U.K. under Grant EP/E060722/1, and by the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    Binary artificial algae algorithm for multidimensional knapsack problems

    Get PDF
    The multidimensional knapsack problem (MKP) is a well-known NP-hard optimization problem. Various meta-heuristic methods are dedicated to solve this problem in literature. Recently a new meta-heuristic algorithm, called artificial algae algorithm (AAA), was presented, which has been successfully applied to solve various continuous optimization problems. However, due to its continuous nature, AAA cannot settle the discrete problem straightforwardly such as MKP. In view of this, this paper proposes a binary artificial algae algorithm (BAAA) to efficiently solve MKP. This algorithm is composed of discrete process, repair operators and elite local search. In discrete process, two logistic functions with different coefficients of curve are studied to achieve good discrete process results. Repair operators are performed to make the solution feasible and increase the efficiency. Finally, elite local search is introduced to improve the quality of solutions. To demonstrate the efficiency of our proposed algorithm, simulations and evaluations are carried out with total of 94 benchmark problems and compared with other bio-inspired state-of-the-art algorithms in the recent years including MBPSO, BPSOTVAC, CBPSOTVAC, GADS, bAFSA, and IbAFSA. The results show the superiority of BAAA to many compared existing algorithms
    corecore