135 research outputs found

    Solving constrained Markovian evolution in QCD with the help of the non-Markovian Monte Carlo

    Full text link
    We present the constrained Monte Carlo (CMC) algorithm for the QCD evolution. The constraint resides in that the total longitudinal energy of the emissions in the MC and in the underlying QCD evolution is predefined (constrained). This CMC implements exactly the full DGLAP evolution of the parton distributions in the hadron with respect to the logarithm of the energy scale. The algorithm of the CMC is referred to as the non-Markovian type. The non-Markovian MC algorithm is defined as the one in which the multiplicity of emissions is chosen randomly as the first variable and not the last one, as in the Markovian MC algorithms. The former case resembles that of the fixed-order matrix element calculations. The CMC algorithm can serve as an alternative to the so-called backward evolution Markovian algorithm of Sjostrand, which is used for modelling the initial-state parton shower in modern QCD MC event generators. We test practical feasibility and efficiency of our CMC implementation in a series of numerical exercises, comparing its results with those from other MC and non-MC programs, in a wide range of Q and x, down to the 0.1% precision level. In particular, satisfactory numerical agreement is found with the results of the Markovian MC program of our own and the other non-MC program. The efficiency of the new constrained MC is found to be quite good

    Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

    Full text link
    This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.Comment: version compatible with with the erratum in Acta Physica Polonic

    Non-Markovian Monte Carlo Algorithm for the Constrained Markovian Evolution in QCD

    Full text link
    We revisit the challenging problem of finding an efficient Monte Carlo (MC) algorithm solving the constrained evolution equations for the initial-state QCD radiation. The type of the parton (quark, gluon) and the energy fraction x of the parton exiting emission chain (entering hard process) are predefined, i.e. constrained throughout the evolution. Such a constraint is mandatory for any realistic MC for the initial state QCD parton shower. We add one important condition: the MC algorithm must not require the a priori knowledge of the full numerical exact solutions of the evolution equations, as is the case in the popular ``Markovian MC for backward evolution''. Our aim is to find at least one solution of this problem that would function in practice. Finding such a solution seems to be definitely within the reach of the currently available computer CPUs and the sophistication of the modern MC techniques. We describe in this work the first example of an efficient solution of this kind. Its numerical implementation is still restricted to the pure gluon-strahlung. As expected, it is not in the class of the so-called Markovian MCs. For this reason we refer to it as belonging to a class of non-Markovian MCs. We show that numerical results of our new MC algorithm agree very well (to 0.2%) with the results of the other MC program of our own (unconstrained Markovian) and another non-MC program QCDnum16. This provides a proof of the existence of the new class of MC techniques, to be exploited in the precision perturbative QCD calculations for the Large Hadron Collider

    Exact solutions of the QCD evolution equations using Monte Carlo method

    Full text link
    We present the exact and precise (~0.1%) numerical solution of the QCD evolution equations for the parton distributions in a wide range of QQ and xx using Monte Carlo (MC) method, which relies on the so-called Markovian algorithm. We point out certain advantages of such a method with respect to the existing non-MC methods. We also formulate a challenge of constructing non-Markovian MC algorithm for the evolution equations for the initial state QCD radiation with tagging the type and xx of the exiting parton. This seems to be within the reach of the presently available computer CPUs and the sophistication of the MC techniques

    Constrained non-Markovian Monte Carlo modelling of the evolution equation in QCD

    Full text link
    A new class of the constrained Monte Carlo (CMC) algorithms for the QCD evolution equation was recently discovered. The constraint is imposed on the type and the total longitudinal energy of the parton exiting QCD evolution and entering a hard process. The efficiency of the new CMCs is found to be reasonable.Comment: Contribution to HERA-LHC worksho

    Markovian MC simulation of QCD evolution at NLO level with minimum k_T

    Full text link
    We present two Monte Carlo algorithms of the Markovian type which solve the modified QCD evolution equations at the NLO level. The modifications with respect to the standard DGLAP evolution concern the argument of the strong coupling constant alpha_S. We analyze the z - dependent argument and then the k_T - dependent one. The evolution time variable is identified with the rapidity. The two algorithms are tested to the 0.05% precision level. We find that the NLO corrections in the evolution of parton momentum distributions with k_T - dependent coupling constant are of the order of 10 to 20%, and in a small x region even up to 30%, with respect to the LO contributions.Comment: 32 pages, 9 pdf figure

    Two real parton contributions to non-singlet kernels for exclusive QCD DGLAP evolution

    Get PDF
    Results for the two real parton differential distributions needed for implementing a next-to-leading order (NLO) parton shower Monte Carlo are presented. They are also integrated over the phase space in order to provide solid numerical control of the MC codes and for the discussion of the differences between the standard MSˉ\bar{MS} factorization and Monte Carlo implementation at the level of inclusive NLO evolution kernels. Presented results cover the class of non-singlet diagrams entering into NLO kernels. The classic work of Curci-Furmanski-Pertonzio was used as a guide in the calculations.Comment: 34 pages, 3 figure
    corecore