1,170 research outputs found

    Inventory control in supply chains: Alternative approaches to a two-stage lot-sizing problem

    Get PDF
    The principal challenge of inventory control in supply chains is that the interacting autonomous enterprises have to plan their production and logistics under information asymmetry, driven by different, often conflicting objectives. In this paper, four different computational approaches are investigated to cope with this challenge: decomposition, integration, coordination, and bilevel programming. The four approaches are applied to solving the same two-stage economic lot-sizing problem, and compared in computational experiments. The prerequisites of the approaches are analyzed, and it is shown that the profits realized and the costs incurred at the different parties largely depend on the solution approach applied. This research also resulted in a novel coordination mechanism, as well as a new algorithm for the bilevel optimization approach to the investigated lot-sizing problem. A specific goal of this study is to highlight the so far less recognized application potential of the coordination and the bilevel optimization approaches for controlling inventories in a supply chain. © 2012 Elsevier B.V. All rights reserved

    Fuzzy Bi-level Decision-Making Techniques: A Survey

    Full text link
    © 2016 the authors. Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques

    Exact solution approaches for bilevel lot-sizing

    Get PDF
    In this paper we propose exact solution methods for a bilevel uncapacitated lot-sizing problem with backlogs. This is an extension of the classical uncapacitated lot-sizing problem with backlogs, in which two autonomous and self-interested decision makers constitute a two-echelon supply chain. The leader buys items from the follower in order to meet external demand at lowest cost. The follower also tries to minimize its costs. Both parties may backlog. We study the leader's problem, i.e., how to determine supply requests over time to minimize its costs in view of the possible actions of the follower. We develop two mixed-integer linear programming reformulations, as well as cutting planes to cut off feasible, but suboptimal solutions. We compare the reformulations on a series of benchmark instances. © 2012 Elsevier B.V. All rights reserved

    Particle swarm optimization for bi-level pricing problems in supply chains

    Full text link
    With rapid technological innovation and strong competition in hi-tech industries such as computer and communication organizations, the upstream component price and the downstream product cost usually decline significantly with time. As a result, an effective pricing supply chain model is very important. This paper first establishes two bi-level pricing models for pricing problems with the buyer and the vendor in a supply chain designated as the leader and the follower, respectively. A particle swarm optimization (PSO) based algorithm is developed to solve problems defined by these bi-level pricing models. Experiments illustrate that this PSO based algorithm can achieve a profit increase for buyers or vendors if they are treated as the leaders under some situations, compared with the existing methods. © 2010 Springer Science+Business Media, LLC

    A reformulation strategy for mixed-integer linear bi-level programming problems

    Get PDF
    Bi-level programming has been used widely to model interactions between hierarchical decision-making problems, and their solution is challenging, especially when the lower-level problem contains discrete decisions. The solution of such mixed-integer linear bi-level problems typically need decomposition, approximation or heuristic-based strategies which either require high computational effort or cannot guarantee a global optimal solution. To overcome these issues, this paper proposes a two-step reformulation strategy in which the first part consists of reformulating the inner mixed-integer problem into a nonlinear one, while in the second step the well-known Karush-Kuhn-Tucker conditions for the nonlinear problem are formulated. This results in a mixed-integer nonlinear problem that can be solved with a global optimiser. The computational and numerical benefits of the proposed reformulation strategy are demonstrated by solving five examples from the literature

    A solution to bi/tri-level programming problems using particle swarm optimization

    Full text link
    © 2016 Elsevier Inc. Multilevel (including bi-level and tri-level) programming aims to solve decentralized decision-making problems that feature interactive decision entities distributed throughout a hierarchical organization. Since the multilevel programming problem is strongly NP-hard and traditional exact algorithmic approaches lack efficiency, heuristics-based particle swarm optimization (PSO) algorithms have been used to generate an alternative for solving such problems. However, the existing PSO algorithms are limited to solving linear or small-scale bi-level programming problems. This paper first develops a novel bi-level PSO algorithm to solve general bi-level programs involving nonlinear and large-scale problems. It then proposes a tri-level PSO algorithm for handling tri-level programming problems that are more challenging than bi-level programs and have not been well solved by existing algorithms. For the sake of exploring the algorithms' performance, the proposed bi/tri-level PSO algorithms are applied to solve 62 benchmark problems and 810 large-scale problems which are randomly constructed. The computational results and comparison with other algorithms clearly illustrate the effectiveness of the proposed PSO algorithms in solving bi-level and tri-level programming problems
    • …
    corecore