6,957 research outputs found

    Linear Precoding and Equalization for Network MIMO with Partial Cooperation

    Full text link
    A cellular multiple-input multiple-output (MIMO) downlink system is studied in which each base station (BS) transmits to some of the users, so that each user receives its intended signal from a subset of the BSs. This scenario is referred to as network MIMO with partial cooperation, since only a subset of the BSs are able to coordinate their transmission towards any user. The focus of this paper is on the optimization of linear beamforming strategies at the BSs and at the users for network MIMO with partial cooperation. Individual power constraints at the BSs are enforced, along with constraints on the number of streams per user. It is first shown that the system is equivalent to a MIMO interference channel with generalized linear constraints (MIMO-IFC-GC). The problems of maximizing the sum-rate(SR) and minimizing the weighted sum mean square error (WSMSE) of the data estimates are non-convex, and suboptimal solutions with reasonable complexity need to be devised. Based on this, suboptimal techniques that aim at maximizing the sum-rate for the MIMO-IFC-GC are reviewed from recent literature and extended to the MIMO-IFC-GC where necessary. Novel designs that aim at minimizing the WSMSE are then proposed. Extensive numerical simulations are provided to compare the performance of the considered schemes for realistic cellular systems.Comment: 13 pages, 5 figures, published in IEEE Transactions on Vehicular Technology, June 201

    Improved Linear Precoding over Block Diagonalization in Multi-cell Cooperative Networks

    Full text link
    In downlink multiuser multiple-input multiple-output (MIMO) systems, block diagonalization (BD) is a practical linear precoding scheme which achieves the same degrees of freedom (DoF) as the optimal linear/nonlinear precoding schemes. However, its sum-rate performance is rather poor in the practical SNR regime due to the transmit power boost problem. In this paper, we propose an improved linear precoding scheme over BD with a so-called "effective-SNR-enhancement" technique. The transmit covariance matrices are obtained by firstly solving a power minimization problem subject to the minimum rate constraint achieved by BD, and then properly scaling the solution to satisfy the power constraints. It is proved that such approach equivalently enhances the system SNR, and hence compensates the transmit power boost problem associated with BD. The power minimization problem is in general non-convex. We therefore propose an efficient algorithm that solves the problem heuristically. Simulation results show significant sum rate gains over the optimal BD and the existing minimum mean square error (MMSE) based precoding schemes.Comment: 21 pages, 4 figure
    • …
    corecore