1,150 research outputs found

    Solving Multiclass Learning Problems via Error-Correcting Output Codes

    Full text link
    Multiclass learning problems involve finding a definition for an unknown function f(x) whose range is a discrete set containing k &gt 2 values (i.e., k ``classes''). The definition is acquired by studying collections of training examples of the form [x_i, f (x_i)]. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which error-correcting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of overfitting avoidance techniques such as decision-tree pruning. Finally, we show that---like the other methods---the error-correcting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that error-correcting output codes provide a general-purpose method for improving the performance of inductive learning programs on multiclass problems.Comment: See http://www.jair.org/ for any accompanying file

    Totally Corrective Multiclass Boosting with Binary Weak Learners

    Full text link
    In this work, we propose a new optimization framework for multiclass boosting learning. In the literature, AdaBoost.MO and AdaBoost.ECC are the two successful multiclass boosting algorithms, which can use binary weak learners. We explicitly derive these two algorithms' Lagrange dual problems based on their regularized loss functions. We show that the Lagrange dual formulations enable us to design totally-corrective multiclass algorithms by using the primal-dual optimization technique. Experiments on benchmark data sets suggest that our multiclass boosting can achieve a comparable generalization capability with state-of-the-art, but the convergence speed is much faster than stage-wise gradient descent boosting. In other words, the new totally corrective algorithms can maximize the margin more aggressively.Comment: 11 page

    Sub-Classifier Construction for Error Correcting Output Code Using Minimum Weight Perfect Matching

    Full text link
    Multi-class classification is mandatory for real world problems and one of promising techniques for multi-class classification is Error Correcting Output Code. We propose a method for constructing the Error Correcting Output Code to obtain the suitable combination of positive and negative classes encoded to represent binary classifiers. The minimum weight perfect matching algorithm is applied to find the optimal pairs of subset of classes by using the generalization performance as a weighting criterion. Based on our method, each subset of classes with positive and negative labels is appropriately combined for learning the binary classifiers. Experimental results show that our technique gives significantly higher performance compared to traditional methods including the dense random code and the sparse random code both in terms of accuracy and classification times. Moreover, our method requires significantly smaller number of binary classifiers while maintaining accuracy compared to the One-Versus-One.Comment: 7 pages, 3 figure
    • …
    corecore