6,601 research outputs found

    Deep Learning Techniques for Inverse Problems in Imaging

    Full text link
    Recent work in machine learning shows that deep neural networks can be used to solve a wide variety of inverse problems arising in computational imaging. We explore the central prevailing themes of this emerging area and present a taxonomy that can be used to categorize different problems and reconstruction methods. Our taxonomy is organized along two central axes: (1) whether or not a forward model is known and to what extent it is used in training and testing, and (2) whether or not the learning is supervised or unsupervised, i.e., whether or not the training relies on access to matched ground truth image and measurement pairs. We also discuss the trade-offs associated with these different reconstruction approaches, caveats and common failure modes, plus open problems and avenues for future work

    Convolutional Neural Networks Analyzed via Inverse Problem Theory and Sparse Representations

    Full text link
    Inverse problems in imaging such as denoising, deblurring, superresolution (SR) have been addressed for many decades. In recent years, convolutional neural networks (CNNs) have been widely used for many inverse problem areas. Although their indisputable success, CNNs are not mathematically validated as to how and what they learn. In this paper, we prove that during training, CNN elements solve for inverse problems which are optimum solutions stored as CNN neuron filters. We discuss the necessity of mutual coherence between CNN layer elements in order for a network to converge to the optimum solution. We prove that required mutual coherence can be provided by the usage of residual learning and skip connections. We have set rules over training sets and depth of networks for better convergence, i.e. performance.Comment: PostPrint IET Signal Processing Journa

    The Power of Complementary Regularizers: Image Recovery via Transform Learning and Low-Rank Modeling

    Full text link
    Recent works on adaptive sparse and on low-rank signal modeling have demonstrated their usefulness in various image / video processing applications. Patch-based methods exploit local patch sparsity, whereas other works apply low-rankness of grouped patches to exploit image non-local structures. However, using either approach alone usually limits performance in image reconstruction or recovery applications. In this work, we propose a simultaneous sparsity and low-rank model, dubbed STROLLR, to better represent natural images. In order to fully utilize both the local and non-local image properties, we develop an image restoration framework using a transform learning scheme with joint low-rank regularization. The approach owes some of its computational efficiency and good performance to the use of transform learning for adaptive sparse representation rather than the popular synthesis dictionary learning algorithms, which involve approximation of NP-hard sparse coding and expensive learning steps. We demonstrate the proposed framework in various applications to image denoising, inpainting, and compressed sensing based magnetic resonance imaging. Results show promising performance compared to state-of-the-art competing methods.Comment: 13 pages, 7 figures, submitted to TI

    Sparse synthesis regularization with deep neural networks

    Full text link
    We propose a sparse reconstruction framework for solving inverse problems. Opposed to existing sparse regularization techniques that are based on frame representations, we train an encoder-decoder network by including an â„“1\ell^1-penalty. We demonstrate that the trained decoder network allows sparse signal reconstruction using thresholded encoded coefficients without losing much quality of the original image. Using the sparse synthesis prior, we propose minimizing the â„“1\ell^1-Tikhonov functional, which is the sum of a data fitting term and the â„“1\ell^1-norm of the synthesis coefficients, and show that it provides a regularization method.Comment: Presented at the SAMPTA 2019 conferenc

    Learning Personalized Representation for Inverse Problems in Medical Imaging Using Deep Neural Network

    Full text link
    Recently deep neural networks have been widely and successfully applied in computer vision tasks and attracted growing interests in medical imaging. One barrier for the application of deep neural networks to medical imaging is the need of large amounts of prior training pairs, which is not always feasible in clinical practice. In this work we propose a personalized representation learning framework where no prior training pairs are needed, but only the patient's own prior images. The representation is expressed using a deep neural network with the patient's prior images as network input. We then applied this novel image representation to inverse problems in medical imaging in which the original inverse problem was formulated as a constraint optimization problem and solved using the alternating direction method of multipliers (ADMM) algorithm. Anatomically guided brain positron emission tomography (PET) image reconstruction and image denoising were employed as examples to demonstrate the effectiveness of the proposed framework. Quantification results based on simulation and real datasets show that the proposed personalized representation framework outperform other widely adopted methods.Comment: 11 pages, 7 figure

    prDeep: Robust Phase Retrieval with a Flexible Deep Network

    Full text link
    Phase retrieval algorithms have become an important component in many modern computational imaging systems. For instance, in the context of ptychography and speckle correlation imaging, they enable imaging past the diffraction limit and through scattering media, respectively. Unfortunately, traditional phase retrieval algorithms struggle in the presence of noise. Progress has been made recently on more robust algorithms using signal priors, but at the expense of limiting the range of supported measurement models (e.g., to Gaussian or coded diffraction patterns). In this work we leverage the regularization-by-denoising framework and a convolutional neural network denoiser to create prDeep, a new phase retrieval algorithm that is both robust and broadly applicable. We test and validate prDeep in simulation to demonstrate that it is robust to noise and can handle a variety of system models. A MatConvNet implementation of prDeep is available at https://github.com/ricedsp/prDeep

    Sparse-View X-Ray CT Reconstruction Using â„“1\ell_1 Prior with Learned Transform

    Full text link
    A major challenge in X-ray computed tomography (CT) is reducing radiation dose while maintaining high quality of reconstructed images. To reduce the radiation dose, one can reduce the number of projection views (sparse-view CT); however, it becomes difficult to achieve high-quality image reconstruction as the number of projection views decreases. Researchers have applied the concept of learning sparse representations from (high-quality) CT image dataset to the sparse-view CT reconstruction. We propose a new statistical CT reconstruction model that combines penalized weighted-least squares (PWLS) and â„“1\ell_1 prior with learned sparsifying transform (PWLS-ST-â„“1\ell_1), and a corresponding efficient algorithm based on Alternating Direction Method of Multipliers (ADMM). To moderate the difficulty of tuning ADMM parameters, we propose a new ADMM parameter selection scheme based on approximated condition numbers. We interpret the proposed model by analyzing the minimum mean square error of its (â„“2\ell_2-norm relaxed) image update estimator. Our results with the extended cardiac-torso (XCAT) phantom data and clinical chest data show that, for sparse-view 2D fan-beam CT and 3D axial cone-beam CT, PWLS-ST-â„“1\ell_1 improves the quality of reconstructed images compared to the CT reconstruction methods using edge-preserving regularizer and â„“2\ell_2 prior with learned ST. These results also show that, for sparse-view 2D fan-beam CT, PWLS-ST-â„“1\ell_1 achieves comparable or better image quality and requires much shorter runtime than PWLS-DL using a learned overcomplete dictionary. Our results with clinical chest data show that, methods using the unsupervised learned prior generalize better than a state-of-the-art deep "denoising" neural network that does not use a physical imaging model.Comment: The first two authors contributed equally to this wor

    Deep MR Fingerprinting with total-variation and low-rank subspace priors

    Full text link
    Deep learning (DL) has recently emerged to address the heavy storage and computation requirements of the baseline dictionary-matching (DM) for Magnetic Resonance Fingerprinting (MRF) reconstruction. Fed with non-iterated back-projected images, the network is unable to fully resolve spatially-correlated corruptions caused from the undersampling artefacts. We propose an accelerated iterative reconstruction to minimize these artefacts before feeding into the network. This is done through a convex regularization that jointly promotes spatio-temporal regularities of the MRF time-series. Except for training, the rest of the parameter estimation pipeline is dictionary-free. We validate the proposed approach on synthetic and in-vivo datasets

    Greedy Deep Dictionary Learning

    Full text link
    In this work we propose a new deep learning tool called deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion, one layer at a time. This requires solving a simple (shallow) dictionary learning problem, the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like stacked autoencoder and deep belief network; and state of the art supervised dictionary learning tools like discriminative KSVD and label consistent KSVD. Our method yields better results than all

    LSALSA: Accelerated Source Separation via Learned Sparse Coding

    Full text link
    We propose an efficient algorithm for the generalized sparse coding (SC) inference problem. The proposed framework applies to both the single dictionary setting, where each data point is represented as a sparse combination of the columns of one dictionary matrix, as well as the multiple dictionary setting as given in morphological component analysis (MCA), where the goal is to separate a signal into additive parts such that each part has distinct sparse representation within a corresponding dictionary. Both the SC task and its generalization via MCA have been cast as â„“1\ell_1-regularized least-squares optimization problems. To accelerate traditional acquisition of sparse codes, we propose a deep learning architecture that constitutes a trainable time-unfolded version of the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), a special case of the Alternating Direction Method of Multipliers (ADMM). We empirically validate both variants of the algorithm, that we refer to as LSALSA (learned-SALSA), on image vision tasks and demonstrate that at inference our networks achieve vast improvements in terms of the running time, the quality of estimated sparse codes, and visual clarity on both classic SC and MCA problems. Finally, we present a theoretical framework for analyzing LSALSA network: we show that the proposed approach exactly implements a truncated ADMM applied to a new, learned cost function with curvature modified by one of the learned parameterized matrices. We extend a very recent Stochastic Alternating Optimization analysis framework to show that a gradient descent step along this learned loss landscape is equivalent to a modified gradient descent step along the original loss landscape. In this framework, the acceleration achieved by LSALSA could potentially be explained by the network's ability to learn a correction to the gradient direction of steeper descent.Comment: ECML-PKDD 2019 via journal track; Special Issue Mach Learn (2019
    • …
    corecore