10,272 research outputs found

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Least Squares Ranking on Graphs

    Full text link
    Given a set of alternatives to be ranked, and some pairwise comparison data, ranking is a least squares computation on a graph. The vertices are the alternatives, and the edge values comprise the comparison data. The basic idea is very simple and old: come up with values on vertices such that their differences match the given edge data. Since an exact match will usually be impossible, one settles for matching in a least squares sense. This formulation was first described by Leake in 1976 for rankingfootball teams and appears as an example in Professor Gilbert Strang's classic linear algebra textbook. If one is willing to look into the residual a little further, then the problem really comes alive, as shown effectively by the remarkable recent paper of Jiang et al. With or without this twist, the humble least squares problem on graphs has far-reaching connections with many current areas ofresearch. These connections are to theoretical computer science (spectral graph theory, and multilevel methods for graph Laplacian systems); numerical analysis (algebraic multigrid, and finite element exterior calculus); other mathematics (Hodge decomposition, and random clique complexes); and applications (arbitrage, and ranking of sports teams). Not all of these connections are explored in this paper, but many are. The underlying ideas are easy to explain, requiring only the four fundamental subspaces from elementary linear algebra. One of our aims is to explain these basic ideas and connections, to get researchers in many fields interested in this topic. Another aim is to use our numerical experiments for guidance on selecting methods and exposing the need for further development.Comment: Added missing references, comparison of linear solvers overhauled, conclusion section added, some new figures adde

    Diagnosing numerical Cherenkov instabilities in relativistic plasma simulations based on general meshes

    Full text link
    Numerical Cherenkov radiation (NCR) or instability is a detrimental effect frequently found in electromagnetic particle-in-cell (EM-PIC) simulations involving relativistic plasma beams. NCR is caused by spurious coupling between electromagnetic-field modes and multiple beam resonances. This coupling may result from the slow down of poorly-resolved waves due to numerical (grid) dispersion and from aliasing mechanisms. NCR has been studied in the past for finite-difference-based EM-PIC algorithms on regular (structured) meshes with rectangular elements. In this work, we extend the analysis of NCR to finite-element-based EM-PIC algorithms implemented on unstructured meshes. The influence of different mesh element shapes and mesh layouts on NCR is studied. Analytic predictions are compared against results from finite-element-based EM-PIC simulations of relativistic plasma beams on various mesh types.Comment: 31 pages, 20 figure
    corecore