270 research outputs found

    Computing Discrete Logarithms in the Jacobian of High-Genus Hyperelliptic Curves over Even Characteristic Finite Fields

    Get PDF
    We describe improved versions of index-calculus algorithms for solving discrete logarithm problems in Jacobians of high-genus hyperelliptic curves defined over even characteristic fields. Our first improvement is to incorporate several ideas for the low-genus case by Gaudry and Theriault, including the large prime variant and using a smaller factor base, into the large-genus algorithm of Enge and Gaudry. We extend the analysis in [24] to our new algorithm, allowing us to predict accurately the number of random walk steps required to find all relations, and to select optimal degree bounds for the factor base. Our second improvement is the adaptation of sieving techniques from Flassenberg and Paulus, and Jacobson to our setting. The new algorithms are applied to concrete problem instances arising from the Weil descent attack methodology for solving the elliptic curve discrete logarithm problem, demonstrating significant improvements in practice

    Discrete logarithms in curves over finite fields

    Get PDF
    A survey on algorithms for computing discrete logarithms in Jacobians of curves over finite fields

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Solving discrete logarithms on a 170-bit MNT curve by pairing reduction

    Get PDF
    Pairing based cryptography is in a dangerous position following the breakthroughs on discrete logarithms computations in finite fields of small characteristic. Remaining instances are built over finite fields of large characteristic and their security relies on the fact that the embedding field of the underlying curve is relatively large. How large is debatable. The aim of our work is to sustain the claim that the combination of degree 3 embedding and too small finite fields obviously does not provide enough security. As a computational example, we solve the DLP on a 170-bit MNT curve, by exploiting the pairing embedding to a 508-bit, degree-3 extension of the base field.Comment: to appear in the Lecture Notes in Computer Science (LNCS

    Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem

    Get PDF
    International audienceWe propose an index calculus algorithm for the discrete logarithm problem on general abelian varieties of small dimension. The main difference with the previous approaches is that we do not make use of any embedding into the Jacobian of a well-suited curve. We apply this algorithm to the Weil restriction of elliptic curves and hyperelliptic curves over small degree extension fields. In particular, our attack can solve an elliptic curve discrete logarithm problem defined over GF(q^3) in heuristic asymptotic running time O~(q^(4/3)); and an elliptic problem over GF(q^4) or a genus 2 problem over GF(q^2) in heuristic asymptotic running time O~(q^(3/2))

    On Index Calculus Algorithms for Subfield Curves

    Get PDF
    In this paper we further the study of index calculus methods for solving the elliptic curve discrete logarithm problem (ECDLP). We focus on the index calculus for subfield curves, also called Koblitz curves, defined over Fq with ECDLP in Fqn. Instead of accelerating the solution of polynomial systems during index calculus as was predominantly done in previous work, we define factor bases that are invariant under the q-power Frobenius automorphism of the field Fqn, reducing the number of polynomial systems that need to be solved. A reduction by a factor of 1/n is the best one could hope for. We show how to choose factor bases to achieve this, while simultaneously accelerating the linear algebra step of the index calculus method for Koblitz curves by a factor n2. Furthermore, we show how to use the Frobenius endomorphism to improve symmetry breaking for Koblitz curves. We provide constructions of factor bases with the desired properties, and we study their impact on the polynomial system solving costs experimentally.SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    • …
    corecore