5,150 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    EFFICIENT MODULAR IMPLEMENTATION OF BRANCH-AND-BOUND ALGORITHMS *

    Full text link
    This paper demonstrates how branch-and-bound algorithms can be modularized to obtain implementation efficiencies. For the manager, this advantage can be used to obtain faster implementation of algorithm results; for the scientist, it allows efficiencies in the construction of similar algorithms with different search and addressing structures for the purpose of testing to find a preferred algorithm. The demonstration in part is achieved by showing how the computer code of a central module of logic can be transported between different algorithms that have the same search strategy. Modularizations of three common searches (the best-bound search and two variants of the last-in-first-out search) with two addressing methods are detailed and contrasted. Using four assembly line balancing algorithms as examples, modularization is demonstrated and the search and addressing methods are contrasted. The application potential of modularization is broad and includes linear programming-based integer programming. Benefits and disadvantages of modularization are discussed. Computational results demonstrate the viability of the method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75538/1/j.1540-5915.1988.tb00251.x.pd

    Evolutionary algorithms with average crossover and power heuristics for aquaculture diet formulation

    Get PDF
    The aquaculture farming industry is one of the most important industries in Malaysia since it generates income to economic growth and produces main source of food for the nation. One of the pillars in aquaculture farming industries is formulation of food for the animal, which is also known as feed mix or diet formulation. However, the feed component in the aquaculture industry incurs the most expensive operational cost, and has drawn many studies regarding diet formulation. The lack of studies involving modelling approaches had motivated to embark on diet formulation, which searches for the best combination of feed ingredients while satisfying nutritional requirements at a minimum cost. Hence, this thesis investigates a potential approach of Evolutionary Algorithm (EA) to propose a diet formulation solution for aquaculture farming, specifically the shrimp. In order to obtain a good combination of ingredients in the feed, a filtering heuristics known as Power Heuristics was introduced in the initialization stage of the EA methodology. This methodology was capableof filtering certain unwanted ingredients which could lead to potential poor solutions. The success of the proposed EA also relies on a new selection and crossover operators that have improved the overall performance of the solutions. Hence, three main EA model variants were constructed with new initialization mechanism, diverse selection and crossover operators, whereby the proposed EAPH-RWS-Avg Model emerged as the most effective in producing a good solution with the minimum penalty value. The newly proposed model is efficient and able to adapt to changes in the parameters, thus assists relevant users in managing the shrimp diet formulation issues, especially using local ingredients. Moreover, this diet formulation strategy provides user preference elements to choose from a range of preferred ingredients and the preferred total ingredient weights

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book

    Adapting Swarm Intelligence For The Self-Assembly And Optimization Of Networks

    Get PDF
    While self-assembly is a fairly active area of research in swarm intelligence and robotics, relatively little attention has been paid to the issues surrounding the construction of network structures. Here, methods developed previously for modeling and controlling the collective movements of groups of agents are extended to serve as the basis for self-assembly or "growth" of networks, using neural networks as a concrete application to evaluate this novel approach. One of the central innovations incorporated into the model presented here is having network connections arise as persistent "trails" left behind moving agents, trails that are reminiscent of pheromone deposits made by agents in ant colony optimization models. The resulting network connections are thus essentially a record of agent movements. The model's effectiveness is demonstrated by using it to produce two large networks that support subsequent learning of topographic and feature maps. Improvements produced by the incorporation of collective movements are also examined through computational experiments. These results indicate that methods for directing collective movements can be extended to support and facilitate network self-assembly. Additionally, the traditional self-assembly problem is extended to include the generation of network structures based on optimality criteria, rather than on target structures that are specified a priori. It is demonstrated that endowing the network components involved in the self-assembly process with the ability to engage in collective movements can be an effective means of generating computationally optimal network structures. This is confirmed on a number of challenging test problems from the domains of trajectory generation, time-series forecasting, and control. Further, this extension of the model is used to illuminate an important relationship between particle swarm optimization, which usually occurs in high dimensional abstract spaces, and self-assembly, which is normally grounded in real and simulated 2D and 3D physical spaces

    The application and performance of a generic task routine decision making algorithm to recipe selection in meal planning

    Get PDF
    A nutritional meal planning system was implemented to test the effectiveness of a previously developed routine decision making algorithm. The combinatorics involved in ordering recipes in all possible combinations to produce variability in a meal plan and provide sufficient nutrition is conceptually intensive. Meal planning involves selection of food to eat to fulfill a person\u27s nutritional and personal preferences. This thesis demonstrates meal planning as a decision making problem and demonstrates the utility of the routine decision making algorithm by solving this problem. Generic Tasks, identified through artificial intelligence research, provides the basis for this algorithm. It uses user preferences and to select recipes from a database of possible recipes and generate meal plans for the user
    • …
    corecore