2,748 research outputs found

    Actor-Critic Reinforcement Learning for Control with Stability Guarantee

    Full text link
    Reinforcement Learning (RL) and its integration with deep learning have achieved impressive performance in various robotic control tasks, ranging from motion planning and navigation to end-to-end visual manipulation. However, stability is not guaranteed in model-free RL by solely using data. From a control-theoretic perspective, stability is the most important property for any control system, since it is closely related to safety, robustness, and reliability of robotic systems. In this paper, we propose an actor-critic RL framework for control which can guarantee closed-loop stability by employing the classic Lyapunov's method in control theory. First of all, a data-based stability theorem is proposed for stochastic nonlinear systems modeled by Markov decision process. Then we show that the stability condition could be exploited as the critic in the actor-critic RL to learn a controller/policy. At last, the effectiveness of our approach is evaluated on several well-known 3-dimensional robot control tasks and a synthetic biology gene network tracking task in three different popular physics simulation platforms. As an empirical evaluation on the advantage of stability, we show that the learned policies can enable the systems to recover to the equilibrium or way-points when interfered by uncertainties such as system parametric variations and external disturbances to a certain extent.Comment: IEEE RA-L + IROS 202

    The Importance of Clipping in Neurocontrol by Direct Gradient Descent on the Cost-to-Go Function and in Adaptive Dynamic Programming

    Full text link
    In adaptive dynamic programming, neurocontrol and reinforcement learning, the objective is for an agent to learn to choose actions so as to minimise a total cost function. In this paper we show that when discretized time is used to model the motion of the agent, it can be very important to do "clipping" on the motion of the agent in the final time step of the trajectory. By clipping we mean that the final time step of the trajectory is to be truncated such that the agent stops exactly at the first terminal state reached, and no distance further. We demonstrate that when clipping is omitted, learning performance can fail to reach the optimum; and when clipping is done properly, learning performance can improve significantly. The clipping problem we describe affects algorithms which use explicit derivatives of the model functions of the environment to calculate a learning gradient. These include Backpropagation Through Time for Control, and methods based on Dual Heuristic Dynamic Programming. However the clipping problem does not significantly affect methods based on Heuristic Dynamic Programming, Temporal Differences or Policy Gradient Learning algorithms. Similarly, the clipping problem does not affect fixed-length finite-horizon problems

    Dynamically optimal treatment allocation using Reinforcement Learning

    Full text link
    Devising guidance on how to assign individuals to treatment is an important goal in empirical research. In practice, individuals often arrive sequentially, and the planner faces various constraints such as limited budget/capacity, or borrowing constraints, or the need to place people in a queue. For instance, a governmental body may receive a budget outlay at the beginning of a year, and it may need to decide how best to allocate resources within the year to individuals who arrive sequentially. In this and other examples involving inter-temporal trade-offs, previous work on devising optimal policy rules in a static context is either not applicable, or sub-optimal. Here we show how one can use offline observational data to estimate an optimal policy rule that maximizes expected welfare in this dynamic context. We allow the class of policy rules to be restricted for legal, ethical or incentive compatibility reasons. The problem is equivalent to one of optimal control under a constrained policy class, and we exploit recent developments in Reinforcement Learning (RL) to propose an algorithm to solve this. The algorithm is easily implementable with speedups achieved through multiple RL agents learning in parallel processes. We also characterize the statistical regret from using our estimated policy rule by casting the evolution of the value function under each policy in a Partial Differential Equation (PDE) form and using the theory of viscosity solutions to PDEs. We find that the policy regret decays at a nβˆ’1/2n^{-1/2} rate in most examples; this is the same rate as in the static case.Comment: 67 page
    • …
    corecore