11,915 research outputs found

    Exact ground states of a staggered supersymmetric model for lattice fermions

    Get PDF
    We study a supersymmetric model for strongly interacting lattice fermions in the presence of a staggering parameter. The staggering is introduced as a tunable parameter in the manifestly supersymmetric Hamiltonian. We obtain analytic expressions for the ground states in the limit of small and large staggering for the model on the class of doubly decorated lattices. On this type of lattice there are two ground states, each with a different density. In one limit we find these ground states to be a simple Wigner crystal and a valence bond solid (VBS) state. In the other limit we find two types of quantum liquids. As a special case, we investigate the quantum liquid state on the one dimensional chain in detail. It is characterized by a massless kink that separates two types of order.Comment: 21 pages, 6 figures, v2: largely rewritten version with more emphasis on physical interpretatio

    Optimal Acyclic Hamiltonian Path Completion for Outerplanar Triangulated st-Digraphs (with Application to Upward Topological Book Embeddings)

    Full text link
    Given an embedded planar acyclic digraph G, we define the problem of "acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM)" to be the problem of determining an hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to a hamiltonian digraph. Our results include: --We provide a characterization under which a triangulated st-digraph G is hamiltonian. --For an outerplanar triangulated st-digraph G, we define the st-polygon decomposition of G and, based on its properties, we develop a linear-time algorithm that solves the Acyclic-HPCCM problem with at most one crossing per edge of G. --For the class of st-planar digraphs, we establish an equivalence between the Acyclic-HPCCM problem and the problem of determining an upward 2-page topological book embedding with minimum number of spine crossings. We infer (based on this equivalence) for the class of outerplanar triangulated st-digraphs an upward topological 2-page book embedding with minimum number of spine crossings and at most one spine crossing per edge. To the best of our knowledge, it is the first time that edge-crossing minimization is studied in conjunction with the acyclic hamiltonian completion problem and the first time that an optimal algorithm with respect to spine crossing minimization is presented for upward topological book embeddings

    From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

    Full text link
    The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.'s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.Comment: 51 pages, 2 figures. Revised to match journal pape

    Recognizing Visibility Graphs of Polygons with Holes and Internal-External Visibility Graphs of Polygons

    Full text link
    Visibility graph of a polygon corresponds to its internal diagonals and boundary edges. For each vertex on the boundary of the polygon, we have a vertex in this graph and if two vertices of the polygon see each other there is an edge between their corresponding vertices in the graph. Two vertices of a polygon see each other if and only if their connecting line segment completely lies inside the polygon, and they are externally visible if and only if this line segment completely lies outside the polygon. Recognizing visibility graphs is the problem of deciding whether there is a simple polygon whose visibility graph is isomorphic to a given input graph. This problem is well-known and well-studied, but yet widely open in geometric graphs and computational geometry. Existential Theory of the Reals is the complexity class of problems that can be reduced to the problem of deciding whether there exists a solution to a quantifier-free formula F(X1,X2,...,Xn), involving equalities and inequalities of real polynomials with real variables. The complete problems for this complexity class are called Existential Theory of the Reals Complete. In this paper we show that recognizing visibility graphs of polygons with holes is Existential Theory of the Reals Complete. Moreover, we show that recognizing visibility graphs of simple polygons when we have the internal and external visibility graphs, is also Existential Theory of the Reals Complete.Comment: Sumbitted to COCOON2018 Conferenc
    corecore