127,088 research outputs found
Reduction of the hydrophobic attraction between charged solutes in water
We examine the effective force between two nanometer scale solutes in water
by Molecular Dynamics simulations. Macroscopic considerations predict a strong
reduction of the hydrophobic attraction between solutes when the latter are
charged. This is confirmed by the simulations which point to a surprising
constancy of the effective force between oppositely charged solutes at contact,
while like charged solutes lead to significantly different behavior between
positive and negative pairs. The latter exhibit the phenomenon of ``like-charge
attraction" previously observed in some colloidal dispersions.Comment: 4 pages, 5 figure
First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties
Solid-solution strengthening results from solutes impeding the glide of
dislocations. Existing theories of strength rely on solute-dislocation
interactions, but do not consider dislocation core structures, which need an
accurate treatment of chemical bonding. Here, we focus on strengthening of Mg,
the lightest of all structural metals and a promising replacement for heavier
steel and aluminum alloys. Elasticity theory, which is commonly used to predict
the requisite solute-dislocation interaction energetics, is replaced with
quantum-mechanical first-principles calculations to construct a predictive
mesoscale model for solute strengthening of Mg. Results for 29 different
solutes are displayed in a "strengthening design map" as a function of solute
misfits that quantify volumetric strain and slip effects. Our strengthening
model is validated with available experimental data for several solutes,
including Al and Zn, the two most common solutes in Mg. These new results
highlight the ability of quantum-mechanical first-principles calculations to
predict complex material properties such as strength.Comment: 9 pages, 7 figures, 2 table
Charge Redistribution and Phonon Entropy of Vanadium Alloys
The effects of alloying on the lattice dynamics of vanadium were investigated using inelastic neutron scattering. Phonon densities of states were obtained for bcc solid solutions of V with 3d, 4d, and 5d transition metal solutes, from which vibrational entropies of alloying were obtained. A good correlation is found between the vibrational entropy of alloying and the electronegativity of transition metal solutes across the 3d row and down columns of the periodic table. First-principles calculations on supercells matching the experimental compositions predicted a systematic charge redistribution in the nearest-neighbor shell around the solute atoms, also following the Pauling and Watson electronegativity scales. The systematic stiffening of the phonons is interpreted in terms of the modified screening properties of the electron density around the solutes
Model of a fluid at small and large length scales and the hydrophobic effect
We present a statistical field theory to describe large length scale effects
induced by solutes in a cold and otherwise placid liquid. The theory divides
space into a cubic grid of cells. The side length of each cell is of the order
of the bulk correlation length of the bulk liquid. Large length scale states of
the cells are specified with an Ising variable. Finer length scale effects are
described with a Gaussian field, with mean and variance affected by both the
large length scale field and by the constraints imposed by solutes. In the
absence of solutes and corresponding constraints, integration over the Gaussian
field yields an effective lattice gas Hamiltonian for the large length scale
field. In the presence of solutes, the integration adds additional terms to
this Hamiltonian. We identify these terms analytically. They can provoke large
length scale effects, such as the formation of interfaces and depletion layers.
We apply our theory to compute the reversible work to form a bubble in liquid
water, as a function of the bubble radius. Comparison with molecular simulation
results for the same function indicates that the theory is reasonably accurate.
Importantly, simulating the large length scale field involves binary arithmetic
only. It thus provides a computationally convenient scheme to incorporate
explicit solvent dynamics and structure in simulation studies of large
molecular assemblies
Molecular Density Functional Theory for water with liquid-gas coexistence and correct pressure
The solvation of hydrophobic solutes in water is special because liquid and
gas are almost at coexistence. In the common hypernetted chain approximation to
integral equations, or equivalently in the homogenous reference fluid of
molecular density functional theory, coexistence is not taken into account.
Hydration structures and energies of nanometer-scale hydrophobic solutes are
thus incorrect. In this article, we propose a bridge functional that corrects
this thermodynamic inconsistency by introducing a metastable gas phase for the
homogeneous solvent. We show how this can be done by a third order expansion of
the functional around the bulk liquid density that imposes the right pressure
and the correct second order derivatives. Although this theory is not limited
to water, we apply it to study hydrophobic solvation in water at room
temperature and pressure and compare the results to all-atom simulations. With
this correction, molecular density functional theory gives, at a modest
computational cost, quantitative hydration free energies and structures of
small molecular solutes like n-alkanes, and of hard sphere solutes whose radii
range from angstroms to nanometers. The macroscopic liquid-gas surface tension
predicted by the theory is comparable to experiments. This theory gives an
alternative to the empirical hard sphere bridge correction used so far by
several authors.Comment: 18 pages, 6 figure
Molecular mechanisms of adaptation of the moderately halophilic bacterium Halobacillis halophilus to its environment
The capability of osmoadaptation is a prerequisite of organisms that live in an environment with changing salinities. Halobacillus halophilus is a moderately halophilic bacterium that grows between 0.4 and 3 M NaCl by accumulating both chloride and compatible solutes as osmolytes. Chloride is absolutely essential for growth and, moreover, was shown to modulate gene expression and activity of enzymes involved in osmoadaptation. The synthesis of different compatible solutes is strictly salinity- and growth phase-dependent. This unique hybrid strategy of H. halophilus will be reviewed here taking into account the recently published genome sequence. Based on identified genes we will speculate about possible scenarios of the synthesis of compatible solutes and the uptake of potassium ion which would complete our knowledge of the fine-tuned osmoregulation and intracellular osmolyte balance in H. halophilus
Competition of hydrophobic and Coulombic interactions between nano-sized solutes
The solvation of charged, nanometer-sized spherical solutes in water, and the
effective, solvent-induced force between two such solutes are investigated by
constant temperature and pressure Molecular Dynamics simulations of model
solutes carrying various charge patterns. The results for neutral solutes agree
well with earlier findings, and with predictions of simple macroscopic
considerations: substantial hydrophobic attraction may be traced back to strong
depletion (``drying'') of the solvent between the solutes. This hydrophobic
attraction is strongly reduced when the solutes are uniformly charged, and the
total force becomes repulsive at sufficiently high charge; there is a
significant asymmetry between anionic and cationic solute pairs, the latter
experiencing a lesser hydrophobic attraction. The situation becomes more
complex when the solutes carry discrete (rather than uniform) charge patterns.
Due to antagonistic effects of the resulting hydrophilic and hydrophobic
``patches'' on the solvent molecules, water is once more significantly depleted
around the solutes, and the effective interaction reverts to being mainly
attractive, despite the direct electrostatic repulsion between solutes.
Examination of a highly coarse-grained configurational probability density
shows that the relative orientation of the two solutes is very different in
explicit solvent, compared to the prediction of the crude implicit solvent
representation. The present study strongly suggests that a realistic modeling
of the charge distribution on the surface of globular proteins, as well as the
molecular treatment of water are essential prerequisites for any reliable study
of protein aggregation.Comment: 20 pages, 25 figure
Coupling hydrophobic, dispersion, and electrostatic contributions in continuum solvent models
Recent studies of the hydration of micro- and nanoscale solutes have
demonstrated a strong {\it coupling} between hydrophobic, dispersion and
electrostatic contributions, a fact not accounted for in current implicit
solvent models. We present a theoretical formalism which accounts for coupling
by minimizing the Gibbs free energy with respect to a solvent volume exclusion
function. The solvent accessible surface is output of our theory. Our method is
illustrated with the hydration of alkane-assembled solutes on different length
scales, and captures the strong sensitivity to the particular form of the
solute-solvent interactions in agreement with recent computer simulations.Comment: 11 pages, 2 figure
- …
