83,245 research outputs found

    AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    Get PDF
    The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell

    Solar-cell interconnects

    Get PDF
    Study findings concluded that useful bonds can be formed with silver ribbon, silver-plated copper ribbon, and aluminum ribbon. Bonds were formed at from 300 C to 400 C and with enough contact pressure to produce some deformation of ribbon

    Solar cell Patent

    Get PDF
    Development and characteristics of solar cells with phosphors in cover glass to improve response to solar ultraviolet radiatio

    Solar cell shingle

    Get PDF
    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected

    Solar cell module

    Get PDF
    An improved solar cell module for use in terrestrial environments is disclosed. It is characterized by: (1) an internally reflective plate having a planar surface of incidence and an opposed textured surface (2) a plurality of uniformly spaced silicon solar cells having the active surfaces thereof bonded to portions of the textured surface, and (3) a layer of diffusely reflective matter applied to the textured surface in surrounding relation with the solar cells for reflecting solar energy. The solar energy then strikes the surface of incidence at such angles as to be internally re-reflected and caused to progress toward the active surfaces of the solar cells, whereby concentration of incident flux on the solar cell is achieved without increased module depth

    Light emission as a solar cell analysis technique

    Get PDF
    In order to determine if a solar cell would indeed emit usable light as expected, a gallium arsenide solar cell was forward biased and examined with an infrared viewer. The light emitted from the solar cell was not uniform, ever though the I-V curve of the solar cell displayed no defects

    Heat transparent high intensity high efficiency solar cell

    Get PDF
    An improved solar cell design is described. A surface of each solar cell has a plurality of grooves. Each groove has a vertical face and a slanted face that is covered by a reflecting metal. Light rays are reflected from the slanted face through the vertical face where they traverse a photovoltaic junction. As the light rays travel to the slanted face of an adjacent groove, they again traverse the junction. The underside of the reflecting coating directs the light rays toward the opposite surface of solar cell as they traverse the junction again. When the light rays travel through the solar cell and reach the saw toothed grooves on the under side, the process of reflection and repeatedly traversing the junction again takes place. The light rays ultimately emerge from the solar cell. These solar cells are particularly useful at very high levels of insolation because the infrared or heat radiation passes through the cells without being appreciably absorbed to heat the cell
    corecore