16,712 research outputs found
From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces
Surface chemistry bridges the gap between nanocrystal synthesis and their applications. In this respect, the discovery of complex ligand binding motifs on semiconductor quantum dots and metal oxide nanocrystals opens a gateway to new areas of research. The implications are far-reaching, from catalytic model systems to the performance of solar cells
3D characterization of CdSe nanoparticles attached to carbon nanotubes
The crystallographic structure of CdSe nanoparticles attached to carbon
nanotubes has been elucidated by means of high resolution transmission electron
microscopy and high angle annular dark field scanning transmission electron
microscopy tomography. CdSe rod-like nanoparticles, grown in solution together
with carbon nanotubes, undergo a morphological transformation and become
attached to the carbon surface. Electron tomography reveals that the
nanoparticles are hexagonal-based with the (001) planes epitaxially matched to
the outer graphene layer.Comment: 7 pages, 8 figure
Size Dependence of the Multiple Exciton Generation Rate in CdSe Quantum Dots
The multiplication rates of hot carriers in CdSe quantum dots are quantified
using an atomistic pseudopotential approach and first order perturbation
theory. Both excited holes and electrons are considered, and electron-hole
Coulomb interactions are accounted for. We find that holes have much higher
multiplication rates than electrons with the same excess energy due to the
larger density of final states (positive trions). When electron-hole pairs are
generated by photon absorption, however, the net carrier multiplication rate is
dominated by photogenerated electrons, because they have on average much higher
excess energy. We also find, contrary to earlier studies, that the effective
Coulomb coupling governing carrier multiplication is energy dependent. We show
that smaller dots result in a decrease in the carrier multiplication rate for a
given absolute photon energy. However, if the photon energy is scaled by the
volume dependent optical gap, then smaller dots exhibit an enhancement in
carrier multiplication for a given relative energy.Comment: 19 pages, 6 figure
Scalable heating-up synthesis of monodisperse Cu2ZnSnS4 nanocrystals
Monodisperse Cu2ZnSnS4 (CZTS) nanocrystals (NCs), with quasi spherical shape, were prepared by a facile, high-yield, scalable, and high-concentration heat-up procedure. The key parameters to minimize the NC size distribution were efficient mixing and heat transfer in the reaction mixture through intensive argon bubbling and improved control of the heating ramp stability. Optimized synthetic conditions allowed the production of several grams of highly monodisperse CZTS NCs per batch, with up to 5 wt % concentration in a crude solution and a yield above 90%
Solar energy conversion
If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience
Beyond Vibrationally Mediated Electron Transfer: Coherent Phenomena Induced by Ultrafast Charge Separation
Wave packet propagation succeeding electron transfer (ET) from alizarin dye
molecules into the nanocrystalline TiO2 semiconductor has been studied by
ultrafast transient absorption spectroscopy. Due to the ultrafast time scale of
the ET reaction of about 6 fs the system shows substantial differences to
molecular ET systems. We show that the ET process is not mediated by molecular
vibrations and therefore classical ET theories lose their applicability. Here
the ET reaction itself prepares a vibrational wave packet and not the
electromagnetic excitation by the laser pulse. Furthermore, the generation of
phonons during polaron formation in the TiO2 lattice is observed in real time
for this system. The presented investigations enable an unambiguous assignment
of the involved photoinduced mechanisms and can contribute to a corresponding
extension of molecular ET theories to ultrafast ET systems like alizarin/TiO2.Comment: This work was supported by the German Research Foundation (DFG) (Hu
1006/6-1, WA 1850/6-1) and European Union projects FDML-Raman (FP7 ERC StG,
contract no. 259158) and ENCOMOLE-2i (Horizon 2020, ERC CoG no. 646669
Ultrafast supercontinuum spectroscopy of carrier multiplication and biexcitonic effects in excited states of PbS quantum dots
We examine the multiple exciton population dynamics in PbS quantum dots by
ultrafast spectrally-resolved supercontinuum transient absorption (SC-TA). We
simultaneously probe the first three excitonic transitions over a broad
spectral range. Transient spectra show the presence of first order bleach of
absorption for the 1S_h-1S_e transition and second order bleach along with
photoinduced absorption band for 1P_h-1P_e transition. We also report evidence
of the one-photon forbidden 1S_{h,e}-1P_{h,e} transition. We examine signatures
of carrier multiplication (multiexcitons for the single absorbed photon) from
analysis of the first and second order bleaches, in the limit of low absorbed
photon numbers (~ 10^-2), at pump energies from two to four times the
semiconductor band gap. The multiexciton generation efficiency is discussed
both in terms of a broadband global fit and the ratio between early- to
long-time transient absorption signals.. Analysis of population dynamics shows
that the bleach peak due to the biexciton population is red-shifted respect the
single exciton one, indicating a positive binding energy.Comment: 16 pages, 5 figure
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells
Pyrite nanocrystals: shape-controlled synthesis and tunable optical properties via reversible self-assembly
Nanocrystals from non-toxic, earth abundant materials have recently received great interest for their potential large-scale application in photovoltaics and photocatalysis. Here, we report for the first time on the shape-controlled and scalable synthesis of phase-pure pyrite (FeS2) nanocrystals employing the simple, inexpensive, thermal reaction of iron–oleylamine complexes with sulfur in oleylamine. Either dendritic nanocrystals (nanodendrites) or nanocubes are obtained by adjusting the iron-oleylamine concentration and thereby controlling the nucleus concentration and kinetics of the nanocrystal growth. Pyrite nanodendrites are reversibly assembled by washing with toluene and redispersed by adding the ligand oleylamine. The assembly–redispersion-process is accompanied by an increased absorption in the red/near-infrared spectral region for the aggregated state. This increased low-energy absorption is due to interactions between the closed-packed nanocrystals. High-concentration nanodendrite dispersions are used to prepare pyrite thin films with strong broadband extinction in the visible and near-infrared. These films are attractive candidates for light harvesting in all inorganic solar cells based on earth abundant, non-toxic materials as well as for photocatalytic applications
Ag2ZnSnS4 Nanocrystals Expand the Availability of RoHS Compliant Colloidal Quantum Dots
The demonstration of the quantum confinement effect in colloidal quantum dots (QDs) has been extensively studied and exploited mainly in Pb and Cd chalcogenide systems. There has been an urgent need recently for the development of non(less)-toxic colloidal QDs to warrant compliance with current safety regulations (Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC). Herein, we report Pb/Cd-free, solution processed luminescent Ag2ZnSnS4 (AZTS) colloidal QDs. We present a selective and controlled amine and thiol-free synthesis of air stable luminescent AZTS QDs by the hot injection technique. By controlling the reaction conditions we obtain controlled size variation and demonstrate the quantum confinement effect that is in good agreement with the theoretically calculated values. The band gap of the AZTS QDs is size-tunable in the near-infrared from 740 to 850 nm. Finally, we passivate the surface with Zn-oleate, which yields higher quantum yield (QY), longer lifetime, and better colloidal stability.Peer ReviewedPostprint (published version
- …
