1,182 research outputs found

    A Note on Fault Diagnosis Algorithms

    Full text link
    In this paper we review algorithms for checking diagnosability of discrete-event systems and timed automata. We point out that the diagnosability problems in both cases reduce to the emptiness problem for (timed) B\"uchi automata. Moreover, it is known that, checking whether a discrete-event system is diagnosable, can also be reduced to checking bounded diagnosability. We establish a similar result for timed automata. We also provide a synthesis of the complexity results for the different fault diagnosis problems.Comment: Note: This paper is an extended version of the paper published in the proceedings of CDC'09, 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, P.R. China, December 2009

    The Complexity of Codiagnosability for Discrete Event and Timed Systems

    Full text link
    In this paper we study the fault codiagnosis problem for discrete event systems given by finite automata (FA) and timed systems given by timed automata (TA). We provide a uniform characterization of codiagnosability for FA and TA which extends the necessary and sufficient condition that characterizes diagnosability. We also settle the complexity of the codiagnosability problems both for FA and TA and show that codiagnosability is PSPACE-complete in both cases. For FA this improves on the previously known bound (EXPTIME) and for TA it is a new result. Finally we address the codiagnosis problem for TA under bounded resources and show it is 2EXPTIME-complete.Comment: 24 pages

    Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic

    Get PDF
    Autonomous critical systems, such as satellites and space rovers, must be able to detect the occurrence of faults in order to ensure correct operation. This task is carried out by Fault Detection and Identification (FDI) components, that are embedded in those systems and are in charge of detecting faults in an automated and timely manner by reading data from sensors and triggering predefined alarms. The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques. In this paper, we present the first formal approach to the design of FDI components for discrete event systems, both in a synchronous and asynchronous setting. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical cases, and includes novel aspects such as maximality and trace-diagnosability. The language is equipped with a clear semantics based on temporal epistemic logic, and is proved to enjoy suitable properties. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. We propose an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the design approach on an industrial case-study coming from aerospace.Comment: 33 pages, 20 figure

    Causality and Temporal Dependencies in the Design of Fault Management Systems

    Get PDF
    Reasoning about causes and effects naturally arises in the engineering of safety-critical systems. A classical example is Fault Tree Analysis, a deductive technique used for system safety assessment, whereby an undesired state is reduced to the set of its immediate causes. The design of fault management systems also requires reasoning on causality relationships. In particular, a fail-operational system needs to ensure timely detection and identification of faults, i.e. recognize the occurrence of run-time faults through their observable effects on the system. Even more complex scenarios arise when multiple faults are involved and may interact in subtle ways. In this work, we propose a formal approach to fault management for complex systems. We first introduce the notions of fault tree and minimal cut sets. We then present a formal framework for the specification and analysis of diagnosability, and for the design of fault detection and identification (FDI) components. Finally, we review recent advances in fault propagation analysis, based on the Timed Failure Propagation Graphs (TFPG) formalism.Comment: In Proceedings CREST 2017, arXiv:1710.0277

    Diagnosing Errors in DbC Programs Using Constraint Programming

    Get PDF
    Model-Based Diagnosis allows to determine why a correctly designed system does not work as it was expected. In this paper, we propose a methodology for software diagnosis which is based on the combination of Design by Contract, Model-Based Diagnosis and Constraint Programming. The contracts are specified by assertions embedded in the source code. These assertions and an abstraction of the source code are transformed into constraints, in order to obtain the model of the system. Afterwards, a goal function is created for detecting which assertions or source code statements are incorrect. The application of this methodology is automatic and is based on Constraint Programming techniques. The originality of this work stems from the transformation of contracts and source code into constraints, in order to determine which assertions and source code statements are not consistent with the specification.Ministerio de Ciencia y Tecnología DPI2003-07146-C02-0

    A Low-Cost FPGA-Based Test and Diagnosis Architecture for SRAMs

    Get PDF
    The continues improvement of manufacturing technologies allows the realization of integrated circuits containing an ever increasing number of transistors. A major part of these devices is devoted to realize SRAM blocks. Test and diagnosis of SRAM circuits are therefore an important challenge for improving quality of next generation integrated circuits. This paper proposes a flexible platform for testing and diagnosis of SRAM circuits. The architecture is based on the use of a low cost FPGA based board allowing high diagnosability while keeping costs at a very low leve
    corecore