9,338 research outputs found

    Robust Watermarking using Hidden Markov Models

    Get PDF
    Software piracy is the unauthorized copying or distribution of software. It is a growing problem that results in annual losses in the billions of dollars. Prevention is a difficult problem since digital documents are easy to copy and distribute. Watermarking is a possible defense against software piracy. A software watermark consists of information embedded in the software, which allows it to be identified. A watermark can act as a deterrent to unauthorized copying, since it can be used to provide evidence for legal action against those responsible for piracy.In this project, we present a novel software watermarking scheme that is inspired by the success of previous research focused on detecting metamorphic viruses. We use a trained hidden Markov model (HMM) to detect a specific copy of software. We give experimental results that show our scheme is robust. That is, we can identify the original software even after it has been extensively modified, as might occur as part of an attack on the watermarking scheme

    Information hiding through variance of the parametric orientation underlying a B-rep face

    Get PDF
    Watermarking technologies have been proposed for many different,types of digital media. However, to this date, no viable watermarking techniques have yet emerged for the high value B-rep (i.e. Boundary Representation) models used in 3D mechanical CAD systems. In this paper, the authors propose a new approach (PO-Watermarking) that subtly changes a model's geometric representation to incorporate a 'transparent' signature. This scheme enables software applications to create fragile, or robust watermarks without changing the size of the file, or shape of the CAD model. Also discussed is the amount of information the proposed method could transparently embed into a B-rep model. The results presented demonstrate the embedding and retrieval of text strings and investigate the robustness of the approach after a variety of transformation and modifications have been carried out on the data

    A roadside units positioning framework in the context of vehicle-to-infrastructure based on integrated AHP-entropy and group-VIKOR

    Get PDF
    The positioning of roadside units (RSUs) in a vehicle-to-infrastructure (V2I) communication system may have an impact on network performance. Optimal RSU positioning is required to reduce cost and maintain the quality of service. However, RSU positioning is considered a difficult task due to numerous criteria, such as the cost of RSUs, the intersection area and communication strength, which affect the positioning process and must be considered. Furthermore, the conflict and trade-off amongst these criteria and the significance of each criterion are reflected on the RSU positioning process. Towards this end, a four-stage methodology for a new RSU positioning framework using multi-criteria decision-making (MCDM) in V2I communication system context has been designed. Real time V2I hardware for data collection purpose was developed. This hardware device consisted of multi mobile-nodes (in the car) and RSUs and connected via an nRF24L01+ PA/LNA transceiver module with a microcontroller. In the second phase, different testing scenarios were identified to acquire the required data from the V2I devices. These scenarios were evaluated based on three evaluation attributes. A decision matrix consisted of the scenarios as alternatives and its assessment per criterion was constructed. In the third phase, the alternatives were ranked using hybrid of MCDM techniques, specifically the Analytic Hierarchy Process (AHP), Entropy and Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR). The result of each decision ranking was aggregated using Borda voting approach towards a final group ranking. Finally, the validation process was made to ensure the ranking result undergoes a systematic and valid rank. The results indicate the following: (1) The rank of scenarios obtained from group VIKOR suggested the second scenario with, four RSUs, a maximum distance of 200 meters between RSUs and the antennas height of two-meter, is the best positioning scenarios; and (2) in the objective validation. The study also reported significant differences between the scores of the groups, indicating that the ranking results are valid. Finally, the integration of AHP, Entropy and VIKOR has effectively solved the RSUs positioning problems

    A New Digital Watermarking Algorithm Using Combination of Least Significant Bit (LSB) and Inverse Bit

    Full text link
    In this paper, we introduce a new digital watermarking algorithm using least significant bit (LSB). LSB is used because of its little effect on the image. This new algorithm is using LSB by inversing the binary values of the watermark text and shifting the watermark according to the odd or even number of pixel coordinates of image before embedding the watermark. The proposed algorithm is flexible depending on the length of the watermark text. If the length of the watermark text is more than ((MxN)/8)-2 the proposed algorithm will also embed the extra of the watermark text in the second LSB. We compare our proposed algorithm with the 1-LSB algorithm and Lee's algorithm using Peak signal-to-noise ratio (PSNR). This new algorithm improved its quality of the watermarked image. We also attack the watermarked image by using cropping and adding noise and we got good results as well.Comment: 8 pages, 6 figures and 4 tables; Journal of Computing, Volume 3, Issue 4, April 2011, ISSN 2151-961

    Using digital watermarking to enhance security in wireless medical image transmission

    Get PDF
    This is the published version of the article. Copyright 2010 Mary Ann Liebert Inc.During the last few years, wireless networks have been increasingly used both inside hospitals and in patients’ homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. Methods: We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. Results: The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. Discussion: The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.The General Secretariat for Research and Technology of the Hellenic Ministry of Development and the British Council
    corecore