3,884,544 research outputs found

    The BAT-Swift Science Software

    Full text link
    The BAT instrument tells the Swift satellite where to point to make immediate follow-up observations of GRBs. The science software on board must efficiently process gamma-ray events coming in at up to 34 kHz, identify rate increases that could be due to GRBs while disregarding those from known sources, and produce images to accurately and rapidly locate new Gamma-ray sources.Comment: 4 pages, no figures, to appear in Santa Fe proceedings "Gamma-Ray Bursts: 30 Years of Discovery", Fenimore and Galassi (eds), AIP, 200

    How software engineering research aligns with design science: A review

    Full text link
    Background: Assessing and communicating software engineering research can be challenging. Design science is recognized as an appropriate research paradigm for applied research but is seldom referred to in software engineering. Applying the design science lens to software engineering research may improve the assessment and communication of research contributions. Aim: The aim of this study is 1) to understand whether the design science lens helps summarize and assess software engineering research contributions, and 2) to characterize different types of design science contributions in the software engineering literature. Method: In previous research, we developed a visual abstract template, summarizing the core constructs of the design science paradigm. In this study, we use this template in a review of a set of 38 top software engineering publications to extract and analyze their design science contributions. Results: We identified five clusters of papers, classifying them according to their alignment with the design science paradigm. Conclusions: The design science lens helps emphasize the theoretical contribution of research output---in terms of technological rules---and reflect on the practical relevance, novelty, and rigor of the rules proposed by the research.Comment: 32 pages, 10 figure

    Sustainable Software Ecosystems: Software Engineers, Domain Scientists, and Engineers Collaborating for Science

    Full text link
    The development of scientific software is often a partnership between domain scientists and scientific software engineers. It is especially important to embrace these collaborations when developing advanced scientific software, where sustainability, reproducibility, and extensibility are important. In the ideal case, as discussed in this manuscript, this brings together teams composed of the world's foremost scientific experts in a given field with seasoned software developers experienced in forming highly collaborative teams working on software to further scientific research.Comment: 4 pages, submission for WSSSPE

    Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)

    Get PDF
    Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software

    Niche Modeling: Ecological Metaphors for Sustainable Software in Science

    Full text link
    This position paper is aimed at providing some history and provocations for the use of an ecological metaphor to describe software development environments. We do not claim that the ecological metaphor is the best or only way of looking at software - rather we want to ask if it can indeed be a productive and thought provoking one.Comment: Position paper submitted to: Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE) SC13, Sunday, 17 November 2013, Denver, CO, US

    Future management needs of a "software-driven" science community

    Full text link
    The work of astronomers is getting more complex and advanced as the progress of computer development occurs. With improved computing capabilities and increased data flow, more sophisticated software is required in order to interpret, and fully exploit, astronomic data. However, it is not possible for every astronomer to also be a software specialist. As history has shown, the work of scientists always becomes increasingly specialised, and we here argue in favour of another, at least partial, split between "programmers" and "interpreters". In this presentation we outline our vision for a new approach and symbiosis between software specialists and scientists, and present its advantages along with a simple test case.Comment: 7 pages, 3 figures, as presented at SPIE Astronomical instrumentation 201

    Commensal observing with the Allen Telescope array: software command and control

    Full text link
    The Allen Telescope Array (ATA) is a Large-Number-Small-Diameter radio telescope array currently with 42 individual antennas and 5 independent back-end science systems (2 imaging FX correlators and 3 time domain beam formers) located at the Hat Creek Radio Observatory (HCRO). The goal of the ATA is to run multiple back-ends simultaneously, supporting multiple science projects commensally. The primary software control systems are based on a combination of Java, JRuby and Ruby on Rails. The primary control API is simplified to provide easy integration with new back-end systems while the lower layers of the software stack are handled by a master observing system. Scheduling observations for the ATA is based on finding a union between the science needs of multiple projects and automatically determining an efficient path to operating the various sub-components to meet those needs. When completed, the ATA is expected to be a world-class radio telescope, combining dedicated SETI projects with numerous radio astronomy science projects.Comment: SPIE Conference Proceedings, Software and Cyberinfrastructure for Astronomy, Nicole M. Radziwill; Alan Bridger, Editors, 77400Z, Vol 774

    IMP Science Gateway: from the Portal to the Hub of Virtual Experimental Labs in Materials Science

    Full text link
    "Science gateway" (SG) ideology means a user-friendly intuitive interface between scientists (or scientific communities) and different software components + various distributed computing infrastructures (DCIs) (like grids, clouds, clusters), where researchers can focus on their scientific goals and less on peculiarities of software/DCI. "IMP Science Gateway Portal" (http://scigate.imp.kiev.ua) for complex workflow management and integration of distributed computing resources (like clusters, service grids, desktop grids, clouds) is presented. It is created on the basis of WS-PGRADE and gUSE technologies, where WS-PGRADE is designed for science workflow operation and gUSE - for smooth integration of available resources for parallel and distributed computing in various heterogeneous distributed computing infrastructures (DCI). The typical scientific workflows with possible scenarios of its preparation and usage are presented. Several typical use cases for these science applications (scientific workflows) are considered for molecular dynamics (MD) simulations of complex behavior of various nanostructures (nanoindentation of graphene layers, defect system relaxation in metal nanocrystals, thermal stability of boron nitride nanotubes, etc.). The user experience is analyzed in the context of its practical applications for MD simulations in materials science, physics and nanotechnologies with available heterogeneous DCIs. In conclusion, the "science gateway" approach - workflow manager (like WS-PGRADE) + DCI resources manager (like gUSE)- gives opportunity to use the SG portal (like "IMP Science Gateway Portal") in a very promising way, namely, as a hub of various virtual experimental labs (different software components + various requirements to resources) in the context of its practical MD applications in materials science, physics, chemistry, biology, and nanotechnologies.Comment: 6 pages, 5 figures, 3 tables; 6th International Workshop on Science Gateways, IWSG-2014 (Dublin, Ireland, 3-5 June, 2014). arXiv admin note: substantial text overlap with arXiv:1404.545
    corecore