3,228 research outputs found

    Combining Objects with Rules to Represent Aggregation Knowledge in Data Warehouse and OLAP Systems

    Get PDF
    Data warehouses are based on multidimensional modeling. Using On-Line Analytical Processing (OLAP) tools, decision makers navigate through and analyze multidimensional data. Typically, users need to analyze data at different aggregation levels (using roll-up and drill-down functions). Therefore, aggregation knowledge should be adequately represented in conceptual multidimensional models, and mapped in subsequent logical and physical models. However, current conceptual multidimensional models poorly represent aggregation knowledge, which (1) has a complex structure and dynamics and (2) is highly contextual. In order to account for the characteristics of this knowledge, we propose to represent it with objects (UML class diagrams) and rules in Production Rule Representation (PRR) language. Static aggregation knowledge is represented in the class diagrams, while rules represent the dynamics (i.e. how aggregation may be performed depending on context). We present the class diagrams, and a typology and examples of associated rules. We argue that this representation of aggregation knowledge allows an early modeling of user requirements in a data warehouse project.Aggregation; Conceptual Multidimensional Model; Data Warehouse; On-line Analytical Processing (OLAP); Production Rule; UML

    Combining Objects with Rules to Represent Aggregation Knowledge in Data Warehouse and OLAP Systems

    Get PDF
    Les entrepôts de données reposent sur la modélisation multidimensionnelle. A l'aide d'outils OLAP, les décideurs analysent les données à différents niveaux d'agrégation. Il est donc nécessaire de représenter les connaissances d'agrégation dans les modèles conceptuels multidimensionnels, puis de les traduire dans les modèles logiques et physiques. Cependant, les modèles conceptuels multidimensionnels actuels représentent imparfaitement les connaissances d'agrégation, qui (1) ont une structure et une dynamique complexes et (2) sont fortement contextuelles. Afin de prendre en compte les caractéristiques de ces connaissances, nous proposons de les représenter avec des objets (diagrammes de classes UML) et des règles en langage PRR (Production Rule Representation). Les connaissances d'agrégation statiques sont représentées dans les digrammes de classes, tandis que les règles représentent la dynamique (c'est-à-dire comment l'agrégation peut être effectuée en fonction du contexte). Nous présentons les diagrammes de classes, ainsi qu'une typologie et des exemples de règles associées.Agrégation ; Entrepôt de données ; Modèle conceptuel multidimensionnel ; OLAP ; Règle de production ; UML

    Digital service analysis and design : the role of process modelling

    Get PDF
    Digital libraries are evolving from content-centric systems to person-centric systems. Emergent services are interactive and multidimensional, associated systems multi-tiered and distributed. A holistic perspective is essential to their effective analysis and design, for beyond technical considerations, there are complex social, economic, organisational, and ergonomic requirements and relationships to consider. Such a perspective cannot be gained without direct user involvement, yet evidence suggests that development teams may be failing to effectively engage with users, relying on requirements derived from anecdotal evidence or prior experience. In such instances, there is a risk that services might be well designed, but functionally useless. This paper highlights the role of process modelling in gaining such perspective. Process modelling challenges, approaches, and success factors are considered, discussed with reference to a recent evaluation of usability and usefulness of a UK National Health Service (NHS) digital library. Reflecting on lessons learnt, recommendations are made regarding appropriate process modelling approach and application

    Physical Modeling of Data Warehouses Using UML Component and Deployment Diagrams: Design and Implementation Issues

    Get PDF
    Several approaches have been proposed to model different aspects of a Data Warehouse (DW) during recent years, such as the modeling of a DW at the conceptual and logical level, the design of the ETL (Extraction, Transformation, Loading) processes, the derivation of the DW models from the enterprise data models, and customization of a DW schema. At the end of the design, a DW has to be deployed in a database environment, requiring many decisions of a physical nature. However, few efforts have been dedicated to the modeling of the physical design of a DW from the early stages of a DW project. In this article, we argue that some physical decision can be taken from gathering main user requirements. In this paper, we present physical modeling techniques for DWs using the component diagrams and deployment diagrams of the Unified Modeling Language (UML). Our approach allows the designer to anticipate important physical design decisions that may reduce the overall development time of a DW such as replicating dimension tables, vertical and horizontal partitioning of a fact table, and the use of particular servers for certain ETL processes. Moreover, our approach allows the designer to cover all main design phases of DWs, from the conceptual modeling phase to the final implementation. To illustrate our techniques, we show a case study that is implemented on top of a commercial DW management server.This work has been partially supported by the METASIGN project (TIN2004-00779) from the Spanish Ministry of Education and Science

    Model Driven Engineering Benefits for High Level Synthesis

    Get PDF
    This report presents the benefits of using the Model Driven Engineering (MDE) methodology to solve major difficulties encountered by usual high level synthesis (HLS) flows. These advantages are highlighted in a design space exploration environment we propose. MDE is the skeleton of our HLS flow dedicated to intensive signal processing to demonstrate the expected benefits of these software technologies extended to hardware design. Both users and designers of the design flow benefit from the MDE methodology, participating to a concrete and effective advancement in the high level synthesis research domain. The flow is automatized from UML specifications to VHDL code generation and has been successfully evaluated for the conception of a video processing application

    1st doctoral symposium of the international conference on software language engineering (SLE) : collected research abstracts, October 11, 2010, Eindhoven, The Netherlands

    Get PDF
    The first Doctoral Symposium to be organised by the series of International Conferences on Software Language Engineering (SLE) will be held on October 11, 2010 in Eindhoven, as part of the 3rd instance of SLE. This conference series aims to integrate the different sub-communities of the software-language engineering community to foster cross-fertilisation and strengthen research overall. The Doctoral Symposium at SLE 2010 aims to contribute towards these goals by providing a forum for both early and late-stage Ph.D. students to present their research and get detailed feedback and advice from researchers both in and out of their particular research area. Consequently, the main objectives of this event are: – to give Ph.D. students an opportunity to write about and present their research; – to provide Ph.D. students with constructive feedback from their peers and from established researchers in their own and in different SLE sub-communities; – to build bridges for potential research collaboration; and – to foster integrated thinking about SLE challenges across sub-communities. All Ph.D. students participating in the Doctoral Symposium submitted an extended abstract describing their doctoral research. Based on a good set of submisssions we were able to accept 13 submissions for participation in the Doctoral Symposium. These proceedings present final revised versions of these accepted research abstracts. We are particularly happy to note that submissions to the Doctoral Symposium covered a wide range of SLE topics drawn from all SLE sub-communities. In selecting submissions for the Doctoral Symposium, we were supported by the members of the Doctoral-Symposium Selection Committee (SC), representing senior researchers from all areas of the SLE community.We would like to thank them for their substantial effort, without which this Doctoral Symposium would not have been possible. Throughout, they have provided reviews that go beyond the normal format of a review being extra careful in pointing out potential areas of improvement of the research or its presentation. Hopefully, these reviews themselves will already contribute substantially towards the goals of the symposium and help students improve and advance their work. Furthermore, all submitting students were also asked to provide two reviews for other submissions. The members of the SC went out of their way to comment on the quality of these reviews helping students improve their reviewing skills

    1st doctoral symposium of the international conference on software language engineering (SLE) : collected research abstracts, October 11, 2010, Eindhoven, The Netherlands

    Get PDF
    The first Doctoral Symposium to be organised by the series of International Conferences on Software Language Engineering (SLE) will be held on October 11, 2010 in Eindhoven, as part of the 3rd instance of SLE. This conference series aims to integrate the different sub-communities of the software-language engineering community to foster cross-fertilisation and strengthen research overall. The Doctoral Symposium at SLE 2010 aims to contribute towards these goals by providing a forum for both early and late-stage Ph.D. students to present their research and get detailed feedback and advice from researchers both in and out of their particular research area. Consequently, the main objectives of this event are: – to give Ph.D. students an opportunity to write about and present their research; – to provide Ph.D. students with constructive feedback from their peers and from established researchers in their own and in different SLE sub-communities; – to build bridges for potential research collaboration; and – to foster integrated thinking about SLE challenges across sub-communities. All Ph.D. students participating in the Doctoral Symposium submitted an extended abstract describing their doctoral research. Based on a good set of submisssions we were able to accept 13 submissions for participation in the Doctoral Symposium. These proceedings present final revised versions of these accepted research abstracts. We are particularly happy to note that submissions to the Doctoral Symposium covered a wide range of SLE topics drawn from all SLE sub-communities. In selecting submissions for the Doctoral Symposium, we were supported by the members of the Doctoral-Symposium Selection Committee (SC), representing senior researchers from all areas of the SLE community.We would like to thank them for their substantial effort, without which this Doctoral Symposium would not have been possible. Throughout, they have provided reviews that go beyond the normal format of a review being extra careful in pointing out potential areas of improvement of the research or its presentation. Hopefully, these reviews themselves will already contribute substantially towards the goals of the symposium and help students improve and advance their work. Furthermore, all submitting students were also asked to provide two reviews for other submissions. The members of the SC went out of their way to comment on the quality of these reviews helping students improve their reviewing skills
    • …
    corecore