3 research outputs found

    The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications

    Get PDF
    The Global Navigation Satellite System (GNSS) Occultation Sounder (GNOS) is one of the new-generation payloads on board the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth's neutral atmosphere and ionosphere. FY-3C GNOS, on board the FY-3 series C satellite launched in September 2013, was designed to acquire setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BeiDou Navigation Satellite System (BDS) and the US Global Positioning System (GPS). So far, the GNOS measurements and atmospheric and ionospheric data products have been validated and evaluated and then been used for atmosphere- and ionosphere-related scientific applications.This paper reviews the FY-3C GNOS instrument, RO data processing, data quality evaluation, and preliminary research applications according to the state-of-the-art status of the FY-3C GNOS mission and related publications. The reviewed data validation and application results demonstrate that the FY-3C GNOS mission can provide accurate and precise atmospheric and ionospheric GNSS (i.e., GPS and BDS) RO profiles for numerical weather prediction (NWP), global climate monitoring (GCM), and space weather research (SWR). The performance of the FY-3C GNOS product quality evaluation and scientific applications establishes confidence that the GNOS data from the series of FY-3 satellites will provide important contributions to NWP, GCM, and SWR scientific communities.</p

    Commissioning and First Science Results of the Desert Fireball Network: a Global-Scale Automated Survey for Large Meteoroid Impacts

    Get PDF
    This thesis explores the first results from the Desert Fireball Network, a distributed global observatory designed to characterise fireballs caused by meteoroid impacts. To deal with the >50 terabytes of data influx per week, innovative data reduction techniques have been developed. The science topics investigated in this work include airbursts caused by large meteoroids impacting the Earth's atmosphere, the recovery of a meteorite and its orbital history, and the structure of a meteor shower

    Meteoroid Orbital Analysis: Connecting Meteorites and Asteroids

    Get PDF
    Since people started studying meteorites, scientists have attempted to better understand the parent bodies they originated from. Although, this is difficult because, unlike a terrestrial rock, you do not have access to the outcrop. The Near-Earth Object (NEO) population is the source of all meteorites found on Earth. Using the orbital data collected from the Desert Fireball Network, my work clarified the connections between meteorites and their source NEOs. I primarily did this analysis by employing rigorous numerical modeling techniques to constrain the dynamical and physical properties of asteroidal debris
    corecore